scholarly journals Progress toward the Application of a Localized Particle Filter for Numerical Weather Prediction

2019 ◽  
Vol 147 (4) ◽  
pp. 1107-1126 ◽  
Author(s):  
Jonathan Poterjoy ◽  
Louis Wicker ◽  
Mark Buehner

Abstract A series of papers published recently by the first author introduce a nonlinear filter that operates effectively as a data assimilation method for large-scale geophysical applications. The method uses sequential Monte Carlo techniques adopted by particle filters, which make no parametric assumptions for the underlying prior and posterior error distributions. The filter also treats the underlying dynamical system as a set of loosely coupled systems to effectively localize the effect observations have on posterior state estimates. This property greatly reduces the number of particles—or ensemble members—required for its implementation. For these reasons, the method is called the local particle filter. The current manuscript summarizes algorithmic advances made to the local particle filter following recent tests performed over a hierarchy of dynamical systems. The revised filter uses modified vector weight calculations and probability mapping techniques from earlier studies, and new strategies for improving filter stability in situations where state variables are observed infrequently with very accurate measurements. Numerical experiments performed on low-dimensional data assimilation problems provide evidence that supports the theoretical benefits of the new improvements. As a proof of concept, the revised particle filter is also tested on a high-dimensional application from a real-time weather forecasting system at the NOAA/National Severe Storms Laboratory (NSSL). The proposed changes have large implications for researchers applying the local particle filter for real applications, such as data assimilation in numerical weather prediction models.

The global circulation of the terrestrial atmosphere exhibits fluctuations of considerable amplitude in all three components of its total angular momentum on interannual, seasonal and shorter timescales. The fluctuations must be intimately linked with nonlinear barotropic and baroclinic energetic conversion processes throughout the whole atmosphere and it is advocated that studies of routinely produced determinations of atmospheric angular momentum (AAM) changes be incorporated into systematic diagnostic investigations of large-scale atmospheric flows, AAM fluctuations are generated by dynamical interactions between the atmosphere and the underlying planet. These excite tiny but measurable compensating fluctuations in the rotation vector of the massive solid Earth, thereby ensuring conservation of the angular momentum of the whole system. Forecasts and analyses of changes in AAM from the output of a global numerical weather prediction (GNWP) model constitute a stringent test of the model. Successful forecasts of the axial com ponent of AAM, and hence of irregular non-tidal components of short-term changes in the Earth’s rotation, would find practical applications in various areas of astronomy and geodesy, such as spacecraft navigation. Reported in this paper are the main findings of intercomparisons of analyses and forecasts of changes in all three components of AAM obtained from the operational GNWP models at the United Kingdom Meteorological Office (UKMO) and the European Centre for Medium Range Weather Forecasts (ECMWF), over the period covering the two years 1987 and 1988. Included in the results obtained is the finding that useful forecasts of changes in the axial component of AAM can be made out to 5 days and even slightly longer.


2014 ◽  
Vol 31 (1) ◽  
pp. 20-32 ◽  
Author(s):  
L. Cucurull ◽  
R. A. Anthes ◽  
L.-L. Tsao

Abstract Satellite radiance measurements are used daily at numerical weather prediction (NWP) centers around the world, providing a significant positive impact on weather forecast skill. Owing to the existence of systematic errors, either in the observations, instruments, and/or forward models, which can be larger than the signal, the use of infrared or microwave radiances in data assimilation systems requires significant bias corrections. As most bias-correction schemes do not correct for biases that exist in the model forecasts, the model needs to be grounded by an unbiased observing system. These reference measurements, also known as “anchor observations,” prevent a drift of the model to its own climatology and associated biases, thus avoiding a spurious drift of the observation bias corrections. This paper shows that the assimilation of global positioning system (GPS) radio occultation (RO) observations over a 3-month period in an operational NWP system results in smaller, more accurate bias corrections in infrared and microwave observations, resulting in an overall more effective use of satellite radiances and a larger number of radiance observations that pass quality control. A full version of the NCEP data assimilation system is used to evaluate the results on the bias corrections for the High Resolution Infrared Radiation Sounder-3 (HIRS-3) on NOAA-17 and the Advanced Microwave Sounding Unit-A (AMSU-A) on NOAA-15 in an operational environment.


Atmosphere ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 89
Author(s):  
Harel. B. Muskatel ◽  
Ulrich Blahak ◽  
Pavel Khain ◽  
Yoav Levi ◽  
Qiang Fu

Parametrization of radiation transfer through clouds is an important factor in the ability of Numerical Weather Prediction models to correctly describe the weather evolution. Here we present a practical parameterization of both liquid droplets and ice optical properties in the longwave and shortwave radiation. An advanced spectral averaging method is used to calculate the extinction coefficient, single scattering albedo, forward scattered fraction and asymmetry factor (bext, v, f, g), taking into account the nonlinear effects of light attenuation in the spectral averaging. An ensemble of particle size distributions was used for the ice optical properties calculations, which enables the effective size range to be extended up to 570 μm and thus be applicable for larger hydrometeor categories such as snow, graupel, and rain. The new parameterization was applied both in the COSMO limited-area model and in ICON global model and was evaluated by using the COSMO model to simulate stratiform ice and water clouds. Numerical weather prediction models usually determine the asymmetry factor as a function of effective size. For the first time in an operational numerical weather prediction (NWP) model, the asymmetry factor is parametrized as a function of aspect ratio. The method is generalized and is available on-line to be readily applied to any optical properties dataset and spectral intervals of a wide range of radiation transfer models and applications.


Sign in / Sign up

Export Citation Format

Share Document