radiation transfer
Recently Published Documents


TOTAL DOCUMENTS

796
(FIVE YEARS 87)

H-INDEX

42
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Ignatii V. Samokhvalov ◽  
Valentina V. Bryukhanova ◽  
Ilia D. Bryukhanov ◽  
Ivan V. Zhivotenyuk ◽  
Evgenii V. Ni ◽  
...  

2021 ◽  
Author(s):  
David F. Gray

This textbook describes the equipment, observational techniques, and analysis used in the investigation of stellar photospheres. Now in its fourth edition, the text has been thoroughly updated and revised to be more accessible to students. New figures have been added to illustrate key concepts, while diagrams have been redrawn and refreshed throughout. The book starts by developing the tools of analysis, and then demonstrates how they can be applied. Topics covered include radiation transfer, models of stellar photospheres, spectroscopic equipment, how to observe stellar spectra, and techniques for measuring stellar temperatures, radii, surface gravities, chemical composition, velocity fields, and rotation rates. Up-to-date results for real stars are included. Written for starting graduate students or advanced undergraduates, this textbook also includes a wealth of reference material useful to researchers. eBook formats include color imagery while print formats are greyscale only; a wide selection of the color images are available online.


2021 ◽  
Vol 922 (2) ◽  
pp. 144
Author(s):  
Yang Yang ◽  
Zhibo Jiang ◽  
Zhiwei Chen ◽  
Yiping Ao ◽  
Shuling Yu

Abstract The study of infall motion helps us to understand the initial stages of star formation. In this paper, we use the IRAM 30 m telescope to make mapping observations of 24 infall sources confirmed in previous work. The lines we use to track gas infall motions are HCO+ (1-0) and H13CO+ (1-0). All 24 sources show HCO+ emissions, while 18 sources show H13CO+ emissions. The HCO+ integrated intensity maps of 17 sources show clear clumpy structures; for the H13CO+ line, 15 sources show clumpy structures. We estimated the column density of HCO+ and H13CO+ using the RADEX radiation transfer code, and the obtained [HCO+]/[H2] and [H13CO+]/[HCO+] of these sources are about 10−11–10−7 and 10−3–1, respectively. Based on the asymmetry of the line profile of the HCO+, we distinguish these sources: 19 sources show blue asymmetric profiles, and the other sources show red profiles or symmetric peak profiles. For eight sources that have double-peaked blue line profiles and signal-to-noise ratios greater than 10, the RATRAN model is used to fit their HCO+ (1-0) lines, and to estimate their infall parameters. The mean V in of these sources is 0.3–1.3 km s−1, and the M ̇ in is about 10−3–10−4 M ⊙ yr−1, which is consistent with the results of intermediate or massive star formation in previous studies. The V in estimated from the Myers model is 0.1–1.6 km s−1, and the M ̇ in is within 10−3–10−5 M ⊙ yr−1. In addition, some identified infall sources show other star-forming activities, such as outflows and maser emissions. Especially for those sources with a double-peaked blue asymmetric profile, most of them have both infall and outflow evidence.


Atmosphere ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1512
Author(s):  
Mikhail V. Tarasenkov ◽  
Matvei N. Zonov ◽  
Marina V. Engel ◽  
Vladimir V. Belov

A method for estimating the cloud adjacency effect on the reflectance of ground surface areas reconstructed from passive satellite observations through gaps in cloud fields is proposed. The method allows one to estimate gaps of cloud fields in which the cloud adjacency effect can be considered small (the increment of the reflectance Δrsurf≤ 0.005). The algorithm is based on statistical simulation by the Monte Carlo method of radiation transfer in stochastic broken cloudiness with a deterministic cylindrical gap. An interpolation formula is obtained for the radius of the cloud adjacency effect that can be used for the reconstruction the ground surface reflectance in real time without calculations by the Monte Carlo method.


2021 ◽  
Vol 2099 (1) ◽  
pp. 012042
Author(s):  
E O Kovalenko ◽  
I V Prokhorov

Abstract In this paper the problems of constructing sonar images of the seabed according to measurements of the multibeam side scan sonar are considered. The inverse problem for the non-stationary equation of radiation transfer with the diffuse reflection conditions at the boundary which consists in finding the discontinuity lines of the bottom scattering coefficient is investigated. A numerical algorithm for solving the inverse problem is developed, and an analysis of the quality of reconstructing the boundaries of inhomogeneities of the seabed is carried out, depending on the number of views and the width of a radiation pattern and the sounding range.


2021 ◽  
Vol 2099 (1) ◽  
pp. 012067
Author(s):  
Q Mu ◽  
E G Kablukova ◽  
B A Kargin ◽  
S M Prigarin

Abstract In this paper, we try to answer the question: how the multiple scattering, the sun elevation, shape and orientation of ice crystals in the cirrus clouds affect a halo pattern. To study the radiation transfer in optically anisotropic clouds, we have developed the software based on Monte Carlo method and ray tracing. In addition to halos, this software enables one to simulate “anti-halos”, which above the cloud layer can be seen by observers. We present the visualization of halos and anti-halos generated by the cirrus clouds for different shapes and orientations of ice crystals.


2021 ◽  
Vol 2100 (1) ◽  
pp. 012022
Author(s):  
A V Galaktionov

Abstract Energy transfer by thermal radiation in a dispersed medium with a variable refractive index is discussed. This transfer can be described by a surprisingly simple diffusion equation. The process is naturally to interpret as the photon diffusion. The diffusion equation is free from strict conditions of applicability of the radiation transfer equation, which are usually not satisfied in disperse media with densely packed inhomogeneities. Quantum constraints on the value of the photon diffusion coefficient are derived. These restrictions turn out to be similar to the conditions for the applicability of geometric optics. The lower limit of the thermal conductivity coefficient is obtained, which is easier to verify in the experiment. An independent derivation of this limitation is given from considerations of symmetry and dimension.


2021 ◽  
Vol 2099 (1) ◽  
pp. 012050
Author(s):  
I P Yarovenko ◽  
I V Prokhorov

Abstract This paper deals with an inverse problem that consists of an attenuation coefficient identification for the non-stationary radiation transfer equation. To solve the problem, we propose a method that uses several pulses of radiation to extrapolate ideal projection data corresponding to a non-scattering medium. Numerical experiments on the Shepp-Logan phantom show that the method proposed improves the reconstruction quality.


2021 ◽  
Vol 13 (18) ◽  
pp. 3653
Author(s):  
Zoltán Kolláth ◽  
Dénes Száz ◽  
Kornél Kolláth

In recent decades, considerable research has been carried out both in measuring and modelling the brightness of the sky. Modelling is highly complex, as the properties of light emission (spatial and spectral distribution) are generally unknown, and the physical state of the atmosphere cannot be determined independently. The existing radiation transfer models lack the focus on light pollution and model only a narrow spectral range or do not consider realistic atmospheric circumstances. In this paper, we introduce a new Monte Carlo simulation for modelling light pollution, including the optical density of the atmosphere and multiple photon scattering, then we attempt to combine the available information of satellite and ground-based measurements to check the extent to which it is possible to verify our model. It is demonstrated that we need all the separate pieces of information to interpret the observations adequately.


Sign in / Sign up

Export Citation Format

Share Document