Pathophysiology of Tinnitus

1984 ◽  
Vol 93 (1) ◽  
pp. 39-44 ◽  
Author(s):  
Aage R. Møsller

The hypothesis is presented that certain forms of tinnitus are related to abnormal phase-locking of discharges in groups of auditory nerve fibers. Recent developments in auditory neurophysiology have shown that neural coding of the temporal pattern of sounds plays an important role in the analysis of complex sounds. In addition, it has been demonstrated that when some other cranial nerves are damaged, artificial synapses can occur between individual nerve fibers such that ephaptic transmission between nerve fibers is facilitated. Such “crosstalk” between auditory nerve fibers is assumed to result in phase-locking of the spontaneous activity of groups of neurons which in the absence of external sounds creates a neural pattern that resembles that evoked by sounds.

1991 ◽  
Vol 65 (3) ◽  
pp. 424-445 ◽  
Author(s):  
A. S. Feng ◽  
J. C. Hall ◽  
S. Siddique

1. Physiological recordings were made from single auditory fibers in the frog eighth nerve to determine quantitatively how the different behaviorally relevant temporal parameters (the signal rise-fall time, duration, and rate of amplitude modulation) of complex sounds are encoded in the auditory periphery. Individual temporal parameters were varied. Response functions (RFs) were constructed with respect to each of these parameters using each unit's best excitatory frequency (BF) as the carrier. 2. In response to a change in signal rise-fall time, auditory nerve fibers showed little change in the mean spike count or firing rate, i.e., all fibers displayed ALL-PASS RFrfts. But the transient components, particularly the early phasic component, of responses varied with rise-fall times; these components were more pronounced in the responses to stimuli with shorter rise-fall times. 3. In response to an increase in signal duration, auditory nerve fibers showed a corresponding increase in firing duration and thus in the mean spike count, giving rise to HIGH-PASS RFdurs. The shape of response curves differed among fibers; the difference appeared to be related to the fiber's temporal adaptation characteristic. When the firing rate was measured, all fibers displayed higher mean firing rates in response to shorter duration stimuli than they did to longer duration stimuli, thus giving rise to LOW-PASS response functions. 4. To determine the response transfer functions to modulation rate, pulsed (PAM) and sinusoidally (SAM) amplitude-modulated signals were used. These signals differed substantially in terms of their envelopes and how they varied with AM rate. Data were analyzed by 1) plotting spike counts against the AM rate to derive modulation transfer functions (MTFspks) and 2) plotting synchronization coefficients (SCs) against the AM rate to generate MTFscs. 5. In response to PAM stimuli, all fibers showed an increase in mean spike count with modulation frequency over the range examined, giving rise to HIGH-PASS MTFspks. 6. For SAM stimuli, the average energy and duty cycle are independent of AM rate. Most (79%) auditory fibers showed little selectivity for AM rate over a range of 5-400 Hz, giving rise to ALL-PASS MTFspks. The remaining auditory fibers displayed LOW-PASS MTFspks, i.e., there was a distinct decline in the mean spike count with increasing AM rate. 7. In response to PAM stimuli, most fibers showed good response synchrony at low AM rates but the SC declined with an increase in the AM rate (i.e., LOW-PASS MTFscs). The cut-off frequency was typically very high, averaging 90 pulses/s.(ABSTRACT TRUNCATED AT 400 WORDS)


2005 ◽  
Vol 93 (6) ◽  
pp. 3615-3634 ◽  
Author(s):  
Alberto Recio-Spinoso ◽  
Andrei N. Temchin ◽  
Pim van Dijk ◽  
Yun-Hui Fan ◽  
Mario A. Ruggero

Responses to broadband Gaussian white noise were recorded in auditory-nerve fibers of deeply anesthetized chinchillas and analyzed by computation of zeroth-, first-, and second-order Wiener kernels. The first-order kernels (similar to reverse correlations or “revcors”) of fibers with characteristic frequency (CF) <2 kHz consisted of lightly damped transient oscillations with frequency equal to CF. Because of the decay of phase locking strength as a function of frequency, the signal-to-noise ratio of first-order kernels of fibers with CFs >2 kHz decreased with increasing CF at a rate of about −18 dB per octave. However, residual first-order kernels could be detected in fibers with CF as high as 12 kHz. Second-order kernels, 2-dimensional matrices, reveal prominent periodicity at the CF frequency, regardless of CF. Thus onset delays, frequency glides, and near-CF group delays could be estimated for auditory-nerve fibers innervating the entire length of the chinchilla cochlea.


Sign in / Sign up

Export Citation Format

Share Document