Analysis of pumped hydroelectric energy storage for large-scale wind energy integration

Author(s):  
Nick Carew ◽  
William Warnock ◽  
Ramazan Bayindir ◽  
Eklas Hossain ◽  
Adnan Siraj Rakin

Renewable energy sources are becoming a popular choice of energy, due to their sundry advantages and more convenient environmental impacts. Wind certainly emerges as one of the most plausible energy sources in modern power generation. However, large-scale wind energy is associated with fluctuations in voltage and power due to its intermittent nature. The proposed pumped hydroelectric energy storage system offers one of the best solutions in solving this problem. It is shown that large-scale integration of wind energy becomes more feasible and efficient when a proper energy storage system is added to achieve appropriate energy charging or discharging. Upon comparing the potential of different storage systems, pumped hydroelectric energy storage is found to be highly promising for wind integration. In order to demonstrate the behavior of the integrated system with respect to time constant and to verify the feasibility of the energy storage in different case studies, simulations are performed in Matlab/Simulink. This work would open new doors toward the investigation of large-scale wind power integration. It is also expected that pumped hydroelectric energy storage would become a possible alternative for energy reserves for large-scale wind power applications.

2011 ◽  
Vol 187 ◽  
pp. 97-102 ◽  
Author(s):  
Liang Liang ◽  
Jian Lin Li ◽  
Dong Hui

Recently, more and more people realize the importance of environment protection. Electric power generation systems using renewable energy sources have an advantage of no greenhouse effect gas emission. Among all the choices, wind power can offer an economic and environmentally friendly alternative to conventional methods of power supply. As a result, wind energy generation, utilization and its grid penetration in electrical grid is increasing world wide. The wind generated power is always fluctuating due to its time varying nature and causing stability problem. Inserting energy storage system into large scale wind farm to eliminate the fluctuation becomes a solution for developing large scale renewable energy system connected with grid. The topology diagram and control strategy are presented in this paper. According to the simulation result, it could be indicated that embedding energy storage system into wind power system could improve the access friendly and extend system functions. This paper shows that integrating energy storage system into wind power system will build a more reliable and flexible system for power grid.


Author(s):  
Pan Zhao ◽  
Yiping Dai ◽  
Jiangfeng Wang ◽  
Danmei Xie

Due to the increasing oil and gas demand, the shortage of fossil fuel resources, serious global greenhouse effect and extremely environmental deterioration, the renewable energy sources are more and more attractive. The energy storage is a vital problem for the intermittent and seasonal renewable energy sources. In this paper, a wind energy storage system consideration of chlorine production which is located in remote offshore area is proposed. The detailed dynamic models are established and simulations are also carried out. The proposed system stores the surplus energy generated from wind farm as a form of hydrogen via the electrolyzer array, and uses the stored hydrogen to generated electrical energy at poor wind condition through a PEM fuel cell array. The simulation results show that the proposed system could not only absorb the wind power maximally, but also produce sufficient electric energy to meet the load power demands. Moreover, the proposed system could tolerate the frequently impulses because of the variations of wind energy on the small stand-alone power system effectively.


2019 ◽  
Vol 13 (2) ◽  
pp. 116
Author(s):  
Salih N. Akour ◽  
Anas Aref Al-Garalleh

Renewable energy sources particularly wind energy is becoming immensely popular throughout the world. Jordan is one of the countries that are interested in increasing the integration level of the wind energy on the national electrical grid. The main drawback of wind power is its inherent variability and uncertainty of source making wind energy a difficult resource to dispatch. A Pumped Hydroelectric Energy Storage (PHES) system is considered to be an attractive alternative solution for load balancing and energy storage mainly with wind farms. The current research utilizes the existing dams in Jordan as lower basin and provides candidate locations for upper pumped storage basins in the vicinity of these dams without affecting their functionality. These upper basin are semi-natural basins with least amount of construction, i.e. relatively least construction cost. A location survey of the candidate sites in Jordan is conducted where the PHES can be implemented and operated in an efficient manner. Ten locations have been analyzed deeply in the location survey. The results show that six of them are successful candidates and appropriate locations to implement PHES system since they pass all PHES design requirements.


2017 ◽  
Vol 68 (11) ◽  
pp. 2641-2645
Author(s):  
Alexandru Ciocan ◽  
Ovidiu Mihai Balan ◽  
Mihaela Ramona Buga ◽  
Tudor Prisecaru ◽  
Mohand Tazerout

The current paper presents an energy storage system that stores the excessive energy, provided by a hybrid system of renewable energy sources, in the form of compressed air and thermal heat. Using energy storage systems together with renewable energy sources represents a major challenge that could ensure the transition to a viable economic future and a decarbonized economy. Thermodynamic calculations are conducted to investigate the performance of such systems by using Matlab simulation tools. The results indicate the values of primary and global efficiencies for various operating scenarios for the energy storage systems which use compressed air as medium storage, and shows that these could be very effective systems, proving the possibility to supply to the final user three types of energy: electricity, heat and cold function of his needs.


Author(s):  
Jianhui Wong ◽  
Yun Seng Lim

Electrical grid is no longer featured in a conventional way nowadays. Today, the growing of new technologies, primarily the distributed renewable energy sources and electric vehicles, has been integrated with the distribution networks causing several technical issues. As a result, the penetration of the renewable energy sources can be limited by the utility companies. Smart grid has been emerged as one of the solutions to the technical issues, hence allowing the usage of renewable and improving the energy efficiency of the electrical grid. The challenge is to develop an intelligent management system to maintain the balance between the generation and demand. This task can be performed by using energy storage system. As part of the smart grid, the deployment of energy storage system plays a critical role in stabilizing the voltage and frequency of the networks with renewable energy sources and electric vehicles. This book chapter illustrates the revolution and the roles of energy storage for improving the network performance.


2019 ◽  
Vol 2019 (18) ◽  
pp. 5028-5032
Author(s):  
Pranda Prasanta Gupta ◽  
Prerna Jain ◽  
Suman Sharma ◽  
Kailash Chand Sharma ◽  
Rohit Bhakar

Sign in / Sign up

Export Citation Format

Share Document