Influence of TiC on dry sliding wear and mechanical properties of in situ synthesized AA5052 metal matrix composites

2019 ◽  
Vol 53 (28-30) ◽  
pp. 4323-4336 ◽  
Author(s):  
Priyaranjan Samal ◽  
Pandu R Vundavilli ◽  
Arabinda Meher ◽  
Manas Mohan Mahapatra

In this paper, aluminium metal matrix composites were synthesized through in situ process in which aluminium alloy 5052 (AA5052) and titanium carbide were used as matrix and reinforcement materials, respectively. The microstructural characterization and formation of stable TiC phases were analyzed with the help of field emission scanning electron microscope, X-ray diffraction analysis, respectively. The 9% TiC-reinforced MMCs had shown a considerable improvement, i.e. 32% increase in hardness, 78% in ultimate tensile strength and 116% increase in yield strength when compared with the base alloy. The tensile fracture of the specimens shows dimples, voids, cracks, and ridges indicating the brittle nature. Further, the dry sliding wear properties of the composites were studied with the help of a pin-on-disc wear testing machine. The composite with 9% TiC exhibited a decrease in volumetric wear loss by 24% when compared with the base alloy at a load of 30 N. With increase in the TiC content and applied load, the COF values decreased linearly for the composites. The 9% TiC-reinforced composites show an abrasive mode of wear mechanism as a result of formation of deep grooves with no plastic deformation. With the improvement obtained in the wear properties, this metal matrix composite can be considered as a replacement for the conventional brake disc material used in the automobile industry.

2020 ◽  
Vol 29 (1) ◽  
pp. 57-68
Author(s):  
R. Suresh

AbstractIn the present study, aluminium metal matrix composites (AMMC’s) reinforced with boron carbide (B4C) and graphite (Gr) particles were prepared by stir casting method. Dry sliding wear behavior of developed composites was conducted on pin on disc apparatus with variation in sliding distance, applied load and sliding speed. Taguchi method was employed to optimize the data in a controlled way. Analysis of variance was employed to examine the wear behavior of base alloy (Al2219), mono (Al/B4C) and hybrid (Al/B4C/Gr) metal matrix composites. The correlations were established by linear regression models and validated using confirmation tests. The obtained results indicated that B4C content, sliding distance is highly affected by the dry sliding wear followed by sliding speed and applied load. The incorporation of B4C and Gr particles in aluminium improves the tribological characteristics. The SEM images of mono composite shows the deep grooves on worn surface. It demonstrates the signs of abrasive wear of mono composite. The hybrid composite exhibits excellent wear resistance when compared to mono composite and base alloy. The main reason of that is the Gr particles act as a solid lubricating material in the hybrid composite (Al/B4C/Gr).


Wear ◽  
2001 ◽  
Vol 251 (1-12) ◽  
pp. 1408-1413 ◽  
Author(s):  
G. Ranganath ◽  
S.C. Sharma ◽  
M. Krishna

Sign in / Sign up

Export Citation Format

Share Document