aluminium metal
Recently Published Documents


TOTAL DOCUMENTS

534
(FIVE YEARS 201)

H-INDEX

34
(FIVE YEARS 6)

Author(s):  
Umanath K ◽  
Nithyanandhan T ◽  
Adarsh Ajayan ◽  
Devika D ◽  
Gokul Prasath M ◽  
...  

Abstract Aluminium Metal Matrix Composite (AMMC) has broad uses in the medical, aerospace, and automobile industries, which have long sought lightweight materials with superior designs and improved properties to improve performance. This analysis has aimed to prepare an AMMC to investigate its machining and mechanical properties. The AMMC is produced using a stir casting process by reinforcing boron carbide and titanium with aluminium 6082. The material's mechanical properties are studied by using wear test, hardness test, and corrosion test. The wear rate increases when the load increases by varying the load and time with speed as a constant. It is found that the hardness of a material is increased due to titanium and boron carbide as the reinforcement particle in the fabricated AMMC. Using the pitting corrosion technique, the corrosion occurs on the AMMC under the estimated time at room temperature. In order to illustrate the machining characteristics of the aluminium metal matrix composite, an abrasive water jet machining process has been used. The experiments use L9 orthogonal Array using Taguchi's method and ANOVA analysis. The input parameters considered are Traverse rate, Stand-off distance, and Nozzle diameter. To find the optimum value of circularity, cylindricity, and surface roughness by varied input parameters. The respective graphs are also plotted. Scanning electron microscopic analysis was performed on the wear-tested specimen and machining surface of the material to determine the distribution of reinforced material and investigate the material's fracture mechanism. It is found that wear tracks, voids, delamination, micro pits, embedded garnet abrasive particles are located on the machined surface of the AMMC.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
V.K. Swami ◽  
V.K. Swami ◽  
V.K. Swami

Corrosion is the destruction of metal surface by the reaction with its environment (humidity, gases, acid, alkaline etc.). In this process metal convert in to the more stable form such as sulphide oxide etc. Corrosion of materials and structures is a hindrance to the development of society as it causes significant loss to the economy, leads to pollution, and leads to serious disasters, hence its prevention and control is of great benefit for the humanity. Addition of corrosion inhibitors is one of the practical and easy methods to protect metals and alloys against attack of corrosion in many industrial environments. In this chapter thiosemicarbazide based Schiff base 2-[(3,4-dihydroxy-5-nitrophenyl)methylidene]hydrazine1-carbothioamide (DHNPMHC) was synthesized and characterized using elemental analysis, FT-IR and UV–Vis methods. The inhibition efficiency of Schiff base DHNPMHC against aluminium corrosion in 0.5 M HCl was examined using mass loss measurement and scanning electron microscopy (SEM). Results showed that DHNPMHC is an effective inhibitor for aluminium corrosion in 0.5 M HCl solution. The inhibition efficiency also increased with concentration of inhibitor increased. Maximum percentage inhibition efficiency 92.6 % (at 4-hour immersion time) is shown at highest concentration of inhibitor 5% (5X10-5M). Adsorption of the inhibitor on the aluminium surface followed Langmuir adsorption isotherm. SEM study of aluminium surface in presence of inhibitor and in absence of inhibitor also supports the inhibition of corrosion in acidic medium. All results show that the Schiff base of thiosemicarbazide (DHNPMHC) is excellent corrosion inhibitor for aluminium in 0.5 M HCl.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Jagbir Singh ◽  
Mukul Kataria ◽  
Vishesh Kumar ◽  
Chandrashekhar Jawalkar ◽  
Rajendra Madhukar Belokar

Purpose The purpose of the study is to fabricate a joint between two aluminium metal matrix composites using microwave hybrid heating (MHH). Design/methodology/approach Taguchi design of experiments was applied to conduct the experimental study. The mechanical properties such as ultimate tensile strength, micro-hardness and porosity were studied. Grey Relational Analysis was applied to understand the significance of fabrication parameters of best performing sample. The dominant factor of fabrication was analysed using ANOVA. The best performance sample was further characterised using X-ray diffraction and field emission scanning electron microscopy. Energy dispersive X-ray was used to analyse the elemental composition of the sample. Findings The Aluminium Metal Matrix Composite (AMMC) joint was successfully fabricated using MHH. The mechanical properties were mainly influenced by the fabrication factor of exposure time. Originality/value The formation of AMMC joint using MHH might explore the way for the industries in the field of joining.


High Voltage ◽  
2021 ◽  
Author(s):  
Yidong Chen ◽  
Kai Zhou ◽  
Jiamin Kong ◽  
Shakeel Akram ◽  
Xiancheng Ren ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6560
Author(s):  
Kumar Subramanian ◽  
Sakthivel Murugesan ◽  
Dhanesh G. Mohan ◽  
Jacek Tomków

Hybrid aluminium metal matrix composites have the potential to replace single reinforced aluminium metal matrix composites due to improved properties. Moreover, tribological performance is critical for these composites, as they have extensive application areas, such as the automotive, aerospace, marine and defence industries. The present work aims to establish the tribological characteristics of Al7068/Si3N4/BN hybrid metal matrix composites prepared by stir casting route and studied using a pin-on-disc apparatus under dry sliding conditions. The hybrid composite samples were prepared at various weight percentages (0, 5, 10) of Si3N4 and BN particles. To investigate the tribological performance of the prepared composites, the wear experiments were conducted by varying the load (20, 40 and 60 N), sliding velocity (1.5, 2.5 and 3.5 m/s) and sliding distance (500, 1000 and 1500 m). Wear experimental runs were carried out based on the plan of experiments proposed by Taguchi. The minimum wear rate was found with the composite material reinforced with 10 wt. % of Si3N4 and 5 wt. % of BN. Analysis of Variance (ANOVA) was employed to analyse the effect of process parameters on wear rate and coefficient of friction (COF). The ANOVA test revealed that the weight fraction of Si3N4 has more of a contribution percentage (36.60%) on wear rate, and load has more of a contribution percentage (29.73%) on COF. The worn-out surface of the wear test specimens was studied using its corresponding SEM micrograph and correlated with the dry sliding wear experiment results.


Sign in / Sign up

Export Citation Format

Share Document