An integrated study procedure on real-time estimation of time-varying multi-joint human arm viscoelasticity

2011 ◽  
Vol 33 (8) ◽  
pp. 919-941 ◽  
Author(s):  
M. Deng ◽  
A. Inoue ◽  
Q.M. Zhu
AIAA Journal ◽  
2013 ◽  
Vol 51 (1) ◽  
pp. 178-185 ◽  
Author(s):  
Hao Jiang ◽  
Bartel van der Veek ◽  
Daniel Kirk ◽  
Hector Gutierrez

2019 ◽  
Vol 150 ◽  
pp. 1-10 ◽  
Author(s):  
Shuang Wen ◽  
Hong Qi ◽  
Xiao-Ying Yu ◽  
Ya-Tao Ren ◽  
Lin-Yang Wei ◽  
...  

2021 ◽  
Author(s):  
Oswaldo Gressani ◽  
Jacco Wallinga ◽  
Christian Althaus ◽  
Niel Hens ◽  
Christel Faes

AbstractIn infectious disease epidemiology, the instantaneous reproduction number R(t) is a timevarying metric defined as the average number of secondary infections generated by individuals who are infectious at time t. It is therefore a crucial epidemiological parameter that assists public health decision makers in the management of an epidemic. We present a new Bayesian tool for robust estimation of the time-varying reproduction number. The proposed methodology smooths the epidemic curve and allows to obtain (approximate) point estimates and credible envelopes of R(t) by employing the renewal equation, using Bayesian P-splines coupled with Laplace approximations of the conditional posterior of the spline vector. Two alternative approaches for inference are presented: (1) an approach based on a maximum a posteriori argument for the model hyperparameters, delivering estimates of R(t) in only a few seconds; and (2) an approach based on a MCMC scheme with underlying Langevin dynamics for efficient sampling of the posterior target distribution. Case counts per unit of time are assumed to follow a Negative Binomial distribution to account for potential excess variability in the data that would not be captured by a classic Poisson model. Furthermore, after smoothing the epidemic curve, a “plug-in” estimate of the reproduction number can be obtained from the renewal equation yielding a closed form expression of R(t) as a function of the spline parameters. The approach is extremely fast and free of arbitrary smoothing assumptions. EpiLPS is applied on data of SARS-CoV-1 in Hong-Kong (2003), influenza A H1N1 (2009) in the USA and current SARS-CoV-2 pandemic (2020-2021) for Belgium, Portugal, Denmark and France.Author summaryThe instantaneous reproduction number R(t) is a key metric that provides important insights into an epidemic outbreak. We present a flexible Bayesian approach called EpiLPS (Epidemiological modeling with Laplacian-P-splines) for smooth estimation of the epidemic curve and R(t). Computational speed and absence of arbitrary assumptions on smoothing makes EpiLPS an interesting tool for near real-time estimation of the reproduction number. An R software package is available (https://github.com/oswaldogressani).


2020 ◽  
Vol 86 (4) ◽  
pp. 61-65
Author(s):  
M. V. Abramchuk ◽  
R. V. Pechenko ◽  
K. A. Nuzhdin ◽  
V. M. Musalimov

A reciprocating friction machine Tribal-T intended for automated quality control of the rubbing surfaces of tribopairs is described. The distinctive feature of the machine consists in implementation of the forced relative motion due to the frictional interaction of the rubbing surfaces fixed on the drive and conjugate platforms. Continuous processing of the signals from displacement sensors is carried out under conditions of continuous recording of mutual displacements of loaded tribopairs using classical approaches of the theory of automatic control to identify the tribological characteristics. The machine provides consistent visual real time monitoring of the parameters. The MATLAB based computer technologies are actively used in data processing. The calculated tribological characteristics of materials, i.e., the dynamic friction coefficient, damping coefficient and measure of the surface roughness, are presented. The tests revealed that a Tribal-T reciprocating friction machine is effective for real-time study of the aforementioned tribological characteristics of materials and can be used for monitoring of the condition of tribo-nodes of machines and mechanisms.


2013 ◽  
Vol 39 (10) ◽  
pp. 1722
Author(s):  
Zhao-Wei SUN ◽  
Wei-Chao ZHONG ◽  
Shi-Jie ZHANG ◽  
Jian ZHANG

Sign in / Sign up

Export Citation Format

Share Document