tribological characteristics
Recently Published Documents


TOTAL DOCUMENTS

992
(FIVE YEARS 272)

H-INDEX

39
(FIVE YEARS 6)

Materials ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 358
Author(s):  
Magdalena Niemczewska-Wójcik ◽  
Manickaraj Pethuraj ◽  
Marimuthu Uthayakumar ◽  
Mohd Shukry Abdul Majid

Due to their excellent synergistic properties, Aluminum Matrix Composites (AMC) have achieved a high degree of prominence in different industries. In addition to strength, the wear resistance of materials is also an important criterion for numerous applications. The wear resistance depends on the surface topography as well as the working conditions of the interacting parts. Therefore, extensive experiments are being conducted to improve the suitability of engineering materials (including AMC) for different applications. This paper presents research on manufactured aluminum metal matrix composites reinforced with 10 wt.% of Al2SiO5 (aluminum sillimanite). The manufactured and prepared samples were subjected to surface topography measurements and to tribological studies both with and without lubricant using a block-on-ring tester. Based on the results, analyses of the surface topography (i.e., surface roughness parameters, Abbott–Firestone curve, and surface defects) as well as of the tribological characteristics (i.a. friction coefficient, linear wear, and wear intensity) were performed. Differences in the surface topography of the manufactured elements were shown. The surface topography had a significant impact on tribological characteristics of the sliding joints in the tests where lubrication was and was not used. Better tribological characteristics were obtained for the surfaces characterized by greater roughness (determined on the basis of both the profile and surface texture parameters). In the case of tribological tests with lubrication, the friction coefficient as well as the wear intensity was significantly lower compared to tribological tests without lubrication. However, lower values of the friction coefficient and wear intensity were still recorded for the surfaces that were characterized by greater roughness. The obtained results showed that it is important to analyze the surface topography because surface characteristics influence tribological properties.


Author(s):  
Muhamad Sharul Nizam Awang ◽  
Nurin Wahidah Mohd Zulkifli ◽  
Muhammad Mujtaba Abbas ◽  
Syahir Amzar Zulkifli ◽  
Md Abul Kalam ◽  
...  

Author(s):  
M. Shahabuddin ◽  
M. Mofijur ◽  
I.M. Rizwanul Fattah ◽  
M.A. Kalam ◽  
H.H. Masjuki ◽  
...  

Micromachines ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 29
Author(s):  
Gheorghe Nagîț ◽  
Laurențiu Slătineanu ◽  
Oana Dodun ◽  
Andrei Marius Mihalache ◽  
Marius Ionuț Rîpanu ◽  
...  

Different processing methods can change the physical–mechanical properties and the microgeometry of the surfaces made by such processes. In turn, such microchanges may affect the tribological characteristics of the surface layer. The purpose of this research was to study the tribological behavior of a test piece surfaces analyzing the changes on the values of the coefficient of friction and loss of mass that appear in time. The surfaces subjected to experimental research were previously obtained by turning, grinding, ball burnishing, and vibroburnishing. The experimental research was performed using a device adaptable to a universal lathe. Mathematical processing of the experimental results led to the establishment of power-type function empirical models that highlight the intensity of the influence exerted by the pressure and duration of the test on the values of the output parameters. It was found that the best results were obtained in the case of applying ball vibroburnishing as the final process.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mustabshirha Gul ◽  
Md. Abul Kalam ◽  
Nurin Wahidah Mohd Zulkifli ◽  
Masjuki Hj. Hassan ◽  
Md. Mujtaba Abbas ◽  
...  

Purpose The purpose of this study is to improve the tribological characteristics of cotton-biolubricant by adding nanoparticles at extreme pressure (EP) conditions in comparison with commercial lubricant SAE-40. Design/methodology/approach This research involved the synthesis of cotton-biolubricant by transesterification process and then the addition of nanoparticles in it to improve anti wear (AW)/EP tribological behavior. SAE-40 was studied as a reference commercial lubricant. AW/EP characteristics of all samples were estimated by the four-ball tribo-tester according to the American Society for Testing and Materials D2783 standard. Findings The addition of 1-Wt.% TiO2 and Al2O3 with oleic acid surfactant in cotton-biolubricant decreased wear scar diameter effectively and enhanced the lubricity, load-wear-index, weld-load and flash-temperature-parameters. This investigation revealed that cotton-biolubricant with TiO2 nano-particle additive is more effective and will help in developing new efficient biolubricant to replace petroleum-based lubricants. Research limitations/implications Cotton biolubricant with TiO2 nano-particles appeared as an optimistic solution for the global bio-lubricant market. Originality/value No one has not studied the cotton biolubricant with nanoparticles for internal combustion engine applications at high temperature and EP conditions.


2021 ◽  
Vol 2131 (5) ◽  
pp. 052085
Author(s):  
N S Dovbysh ◽  
A V Zhdanov

Abstract This paper presents the results of a study of various processing modes during the laser surfacing process. Various grades of steel were used as samples, and the resulting coatings were based on two grades of powders. The microhardness values were obtained both for the main steel material and for the coatings obtained on the samples. The values of the friction coefficients of the coatings are obtained, on the basis of which the graphs of standard deviations are constructed. The results are summarized using graphs and figures.


Sign in / Sign up

Export Citation Format

Share Document