A simplified in vitro model of oxidant injury using vascular endothelial cells

1993 ◽  
Vol 29 (7) ◽  
pp. 531-536 ◽  
Author(s):  
Lin Li ◽  
Benjamin H. S. Lau
Nutrients ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 655 ◽  
Author(s):  
Mirko Marino ◽  
Cristian Del Bo’ ◽  
Massimiliano Tucci ◽  
Dorothy Klimis-Zacas ◽  
Patrizia Riso ◽  
...  

The present study aims to evaluate the ability of peonidin and petunidin-3-glucoside (Peo-3-glc and Pet-3-glc) and their metabolites (vanillic acid; VA and methyl-gallic acid; MetGA), to prevent monocyte (THP-1) adhesion to endothelial cells (HUVECs), and to reduce the production of vascular cell adhesion molecule (VCAM)-1, E-selectin and vascular endothelial growth factor (VEGF) in a stimulated pro-inflammatory environment, a pivotal step of atherogenesis. Tumor necrosis factor-α (TNF-α; 100 ng mL−1) was used to stimulate the adhesion of labelled monocytes (THP-1) to endothelial cells (HUVECs). Successively, different concentrations of Peo-3-glc and Pet-3-glc (0.02 µM, 0.2 µM, 2 µM and 20 µM), VA and MetGA (0.05 µM, 0.5 µM, 5 µM and 50 µM) were tested. After 24 h, VCAM-1, E-selectin and VEGF were quantified by ELISA, while the adhesion process was measured spectrophotometrically. Peo-3-glc and Pet-3-glc (from 0.02 µM to 20 µM) significantly (p < 0.0001) decreased THP-1 adhesion to HUVECs at all concentrations (−37%, −24%, −30% and −47% for Peo-3-glc; −37%, −33%, −33% and −45% for Pet-3-glc). VA, but not MetGA, reduced the adhesion process at 50 µM (−21%; p < 0.001). At the same concentrations, a significant (p < 0.0001) reduction of E-selectin, but not VCAM-1, was documented. In addition, anthocyanins and their metabolites significantly decreased (p < 0.001) VEGF production. The present findings suggest that while Peo-3-glc and Pet-3-glc (but not their metabolites) reduced monocyte adhesion to endothelial cells through suppression of E-selectin production, VEGF production was reduced by both anthocyanins and their metabolites, suggesting a role in the regulation of angiogenesis.


1974 ◽  
Vol 60 (3) ◽  
pp. 673-684 ◽  
Author(s):  
Michael A. Gimbrone ◽  
Ramzi S. Cotran ◽  
Judah Folkman

Human endothelial cells, obtained by collagenase treatment of term umbilical cord veins, were cultured using Medium 199 supplemented with 20% fetal calf serum. Small clusters of cells initially spread on plastic or glass, coalesced and grew to form confluent monolayers of polygonal cells by 7 days. Cells in primary and subcultures were identified as endothelium by the presence of Weibel-Palade bodies by electron microscopy. A morphologically distinct subpopulation of cells contaminating some primary endothelial cultures was selectively subcultured, and identified by ultrastructural criteria as vascular smooth muscle. Autoradiography of endothelial cells after exposure to [3H]thymidine showed progressive increases in labeling in growing cultures beginning at 24 h. In recently confluent cultures, labeling indices were 2.4% in central closely packed regions, and 53.2% in peripheral growing regions. 3 days after confluence, labeling was uniform, being 3.5 and 3.9% in central and peripheral areas, respectively. When small areas of confluent cultures were experimentally "denuded," there were localized increases in [3H]thymidine labeling and eventual reconstitution of the monolayer. Liquid scintillation measurements of [3H]thymidine incorporation in primary and secondary endothelial cultures in microwell trays showed a similar correlation of DNA synthesis with cell density. These data indicate that endothelial cell cultures may provide a useful in vitro model for studying pathophysiologic factors in endothelial regeneration.


Author(s):  
Susan Gallogly ◽  
Takeshi Fujisawa ◽  
John D. Hung ◽  
Mairi Brittan ◽  
Elizabeth M. Skinner ◽  
...  

Abstract Purpose Endothelial dysfunction is central to the pathogenesis of acute coronary syndrome. The study of diseased endothelium is very challenging due to inherent difficulties in isolating endothelial cells from the coronary vascular bed. We sought to isolate and characterise coronary endothelial cells from patients undergoing thrombectomy for myocardial infarction to develop a patient-specific in vitro model of endothelial dysfunction. Methods In a prospective cohort study, 49 patients underwent percutaneous coronary intervention with thrombus aspiration. Specimens were cultured, and coronary endothelial outgrowth (CEO) cells were isolated. CEO cells, endothelial cells isolated from peripheral blood, explanted coronary arteries, and umbilical veins were phenotyped and assessed functionally in vitro and in vivo. Results CEO cells were obtained from 27/37 (73%) atherothrombotic specimens and gave rise to cells with cobblestone morphology expressing CD146 (94 ± 6%), CD31 (87 ± 14%), and von Willebrand factor (100 ± 1%). Proliferation of CEO cells was impaired compared to both coronary artery and umbilical vein endothelial cells (population doubling time, 2.5 ± 1.0 versus 1.6 ± 0.3 and 1.2 ± 0.3 days, respectively). Cell migration was also reduced compared to umbilical vein endothelial cells (29 ± 20% versus 85±19%). Importantly, unlike control endothelial cells, dysfunctional CEO cells did not incorporate into new vessels or promote angiogenesis in vivo. Conclusions CEO cells can be reliably isolated and cultured from thrombectomy specimens in patients with acute coronary syndrome. Compared to controls, patient-derived coronary endothelial cells had impaired capacity to proliferate, migrate, and contribute to angiogenesis. CEO cells could be used to identify novel therapeutic targets to enhance endothelial function and prevent acute coronary syndromes.


1988 ◽  
Vol 16 (1) ◽  
pp. 48-53
Author(s):  
Marina Ziche ◽  
Lucia Morbidelli ◽  
Annalisa Rubino ◽  
Piero Dolara ◽  
Stefano Bianchi ◽  
...  

Polymorphonuclear neutrophil (PMN) interaction with vascular endothelial cells is the initial event in the migration of neutrophils through blood vessel walls before reaching inflammation sites in tissues. The interaction between fibroblasts and endothelial cells and their extracellular matrices might be modulated by the activation of neutrophils that occurs at inflammatory reaction sites. We have used an in vitro model to study PMN function, measuring the adhesion of human PMNs to capillary endothelial cells and fibroblasts grown in culture and to their extracellular matrices. The interaction was measured in basal conditions and in the presence of the chemotactic effector, formyl-methionyl-leucyl-phenylalanine (FMLP at the concentration of 10 7M). Adhesion was expressed by the number of adherent PMNs/mm2 on a histological specimen. Moreover, we have adapted a program for image analysis to quantify neutrophil adhesion. Three times more PMNs adhered to matrices than to monolayers, and adherence could be increased by the presence of 10-7M FMLP, except in the case of fibroblast monolayers. We found a good correlation between microscopic observation and computerised image analysis measuring PMN adhesiveness to extracellular matrices.


Sign in / Sign up

Export Citation Format

Share Document