p2x4 receptors
Recently Published Documents


TOTAL DOCUMENTS

103
(FIVE YEARS 19)

H-INDEX

28
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Vanessa D’Antongiovanni ◽  
Carolina Pellegrini ◽  
Laura Benvenuti ◽  
Matteo Fornai ◽  
Clelia Di Salvo ◽  
...  

Abstract The pharmacological blockade of P2X4 receptors has shown potential benefits in the management of several immune/inflammatory diseases. However, data regarding the involvement of P2X4 receptors in the pathophysiological mechanisms of action in intestinal inflammation are not well defined. We aimed to evaluate the anti-inflammatory effects of two novel and selective P2X4 receptor antagonists, NC-2600 and NP-1815-PX, and characterize the molecular mechanisms of their action in a murine model of 2,4-dinitrobenzene sulfonic acid (DNBS)-induced colitis. These two drugs and dexamethasone (DEX) were administered orally for 6 days, immediately after the manifestation of DNBS. The body weight decrease, resulting from colitis, was attenuated by NC-2600 and NP-1815-PX, but not DEX. However, all three drugs attenuated the increase in spleen weight and ameliorated macroscopic and microscopic colonic tissue damage. Furthermore, all three compounds decreased tissue IL-1β levels and caspase-1 expression and activity. Colonic tissue increase of tumor necrosis factor was downregulated by DEX, while both NC-2600 and NP-1815-PX were ineffective The reduction of occludin associated with colitis was ameliorated by NC-2600 and NP-1815-PX, but not DEX. In THP-1 cells, lipopolysaccharide and ATP upregulated IL-1β release and NLRP3, caspase-1, caspase-5 and caspase-8 activity, but not of caspase-4. These changes were prevented by NC-2600 and NP-1815-PX treatment. For the first time, the above findings show that the selective inhibition of P2X4 receptors represents a viable approach to manage bowel inflammation via the inhibition of NLRP3 inflammasome signaling pathways.


Cells ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 45
Author(s):  
Paul Dietl ◽  
Manfred Frick

The lamellar body (LB) of the alveolar type II (ATII) cell is a lysosome-related organelle (LRO) that contains surfactant, a complex mix of mainly lipids and specific surfactant proteins. The major function of surfactant in the lung is the reduction of surface tension and stabilization of alveoli during respiration. Its lack or deficiency may cause various forms of respiratory distress syndrome (RDS). Surfactant is also part of the innate immune system in the lung, defending the organism against air-borne pathogens. The limiting (organelle) membrane that encloses the LB contains various transporters that are in part responsible for translocating lipids and other organic material into the LB. On the other hand, this membrane contains ion transporters and channels that maintain a specific internal ion composition including the acidic pH of about 5. Furthermore, P2X4 receptors, ligand gated ion channels of the danger signal ATP, are expressed in the limiting LB membrane. They play a role in boosting surfactant secretion and fluid clearance. In this review, we discuss the functions of these transporting pathways of the LB, including possible roles in disease and as therapeutic targets, including viral infections such as SARS-CoV-2.


2021 ◽  
pp. MOLPHARM-AR-2021-000402
Author(s):  
Stefan Bidula ◽  
Izzuddin Bin Nadzirin ◽  
Marco MD Cominetti ◽  
Harry Hickey ◽  
Sean A Cullum ◽  
...  

2021 ◽  
Vol 22 (19) ◽  
pp. 10492
Author(s):  
Sin-Lih Tan ◽  
Muruj Barri ◽  
Peace Atakpa-Adaji ◽  
Colin W. Taylor ◽  
Ewan St. John Smith ◽  
...  

The P2X4 purinergic receptor is targeted to endolysosomes, where it mediates an inward current dependent on luminal ATP and pH. Activation of P2X4 receptors was previously shown to trigger lysosome fusion, but the regulation of P2X4 receptors and their role in lysosomal Ca2+ signaling are poorly understood. We show that lysosomal P2X4 receptors are activated downstream of plasma membrane P2X7 and H1 histamine receptor stimulation. When P2X4 receptors are expressed, the increase in near-lysosome cytosolic [Ca2+] is exaggerated, as detected with a low-affinity targeted Ca2+ sensor. P2X4-dependent changes in lysosome properties were triggered downstream of P2X7 receptor activation, including an enlargement of lysosomes indicative of homotypic fusion and a redistribution of lysosomes towards the periphery of the cell. Lysosomal P2X4 receptors, therefore, have a role in regulating lysosomal Ca2+ release and the regulation of lysosomal membrane trafficking.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1234
Author(s):  
Mauricio Reyna-Jeldes ◽  
Erwin De la Fuente-Ortega ◽  
Daniela Cerda ◽  
Erandi Velázquez-Miranda ◽  
Katherine Pinto ◽  
...  

Gastric cancer (GC) is a major health concern worldwide, presenting a complex pathophysiology that has hindered many therapeutic efforts so far. In this context, purinergic signaling emerges as a promising pathway for intervention due to its known role in cancer cell proliferation and migration. In this work, we explored in more detail the role of purinergic signaling in GC with several experimental approaches. First, we measured extracellular ATP concentrations on GC-derived cell lines (AGS, MKN-45, and MKN-74), finding higher levels of extracellular ATP than those obtained for the non-tumoral gastric cell line GES-1. Next, we established the P2Y2 and P2X4 receptors (P2Y2R and P2X4R) expression profile on these cells and evaluated their role on cell proliferation and migration after applying overexpression and knockdown strategies. In general, a P2Y2R overexpression and P2X4R downregulation pattern were observed on GC cell lines, and when these patterns were modified, concomitant changes in cell viability were observed. These modifications on gene expression also modified transepithelial electrical resistance (TEER), showing that higher P2Y2R levels decreased TEER, and high P2X4R expression had the opposite effect, suggesting that P2Y2R and P2X4R activation could promote and suppress epithelial-mesenchymal transition (EMT), respectively. These effects were confirmed after treating AGS cells with UTP, a P2Y2R-agonist that modified the expression patterns towards mesenchymal markers. To further characterize the effects of P2Y2R activation on EMT, we used cDNA microarrays and observed that UTP induced important transcriptional changes on several cell processes like cell proliferation induction, apoptosis inhibition, cell differentiation induction, and cell adhesion reduction. These results suggest that purinergic signaling plays a complex role in GC pathophysiology, and changes in purinergic balance can trigger tumorigenesis in non-tumoral gastric cells.


PAIN Reports ◽  
2021 ◽  
Vol 6 (1) ◽  
pp. e864
Author(s):  
Keita Kohno ◽  
Makoto Tsuda
Keyword(s):  

2020 ◽  
Vol 21 (22) ◽  
pp. 8572
Author(s):  
Reece Andrew Sophocleous ◽  
Nicole Ashleigh Miles ◽  
Lezanne Ooi ◽  
Ronald Sluyter

Purinergic receptors of the P2 subclass are commonly found in human and rodent macrophages where they can be activated by adenosine 5′-triphosphate (ATP) or uridine 5′-triphosphate (UTP) to mediate Ca2+ mobilization, resulting in downstream signalling to promote inflammation and pain. However, little is understood regarding these receptors in canine macrophages. To establish a macrophage model of canine P2 receptor signalling, the expression of these receptors in the DH82 canine macrophage cell line was determined by reverse transcription polymerase chain reaction (RT-PCR) and immunocytochemistry. P2 receptor function in DH82 cells was pharmacologically characterised using nucleotide-induced measurements of Fura-2 AM-bound intracellular Ca2+. RT-PCR revealed predominant expression of P2X4 receptors, while immunocytochemistry confirmed predominant expression of P2Y2 receptors, with low levels of P2X4 receptor expression. ATP and UTP induced robust Ca2+ responses in the absence or presence of extracellular Ca2+. ATP-induced responses were only partially inhibited by the P2X4 receptor antagonists, 2′,3′-O-(2,4,6-trinitrophenyl)-ATP (TNP-ATP), paroxetine and 5-BDBD, but were strongly potentiated by ivermectin. UTP-induced responses were near completely inhibited by the P2Y2 receptor antagonists, suramin and AR-C118925. P2Y2 receptor-mediated Ca2+ mobilization was inhibited by U-73122 and 2-aminoethoxydiphenyl borate (2-APB), indicating P2Y2 receptor coupling to the phospholipase C and inositol triphosphate signal transduction pathway. Together this data demonstrates, for the first time, the expression of functional P2 receptors in DH82 canine macrophage cells and identifies a potential cell model for studying macrophage-mediated purinergic signalling in inflammation and pain in dogs.


FEBS Letters ◽  
2020 ◽  
Vol 594 (24) ◽  
pp. 4381-4389
Author(s):  
Frederik Bergler ◽  
Christian Fuentes ◽  
Md. Fahim Kadir ◽  
Camilo Navarrete ◽  
Jack Supple ◽  
...  

2020 ◽  
Vol 129 ◽  
pp. 110447 ◽  
Author(s):  
Wen-jun Zhang ◽  
Hong-liang Luo ◽  
Zheng-ming Zhu

Sign in / Sign up

Export Citation Format

Share Document