A multi-agent-based for fault location in distribution networks with wind power generator

2021 ◽  
pp. 0309524X2110445
Author(s):  
Mohamed Azeroual ◽  
Younes Boujoudar ◽  
Ayman Aljarbouh ◽  
Hassan El Moussaoui ◽  
Hassane El Markhi

The integration of distributed generation (DG) units such as wind power into the distribution network are one of the most viable technique to meet the energy demand increases. But, the integration of these DG units into power systems can change the dynamic performances of the systems and create new challenges that are necessary to be taken care of in the operation of the network. The fault location and diagnosis are the most significant technical challenges that can improve power systems’ reliability and stability. In this paper, a Multi-Agent System (MAS) based on current amplitude and current direction measured proposed for fault location, isolation, and power restoration in a smart distribution system with the presence of a wind power generator. The agents can communicate and collaborate to locate the faulted line, then send trips signal to corresponding circuit breakers accordingly. The simulation results show the performance of the proposed techniques.

2016 ◽  
Vol 13 (3) ◽  
pp. 347-360 ◽  
Author(s):  
Amin Safari ◽  
Davoud Sheibai

This paper presents an efficient Artificial Bee Colony (ABC) algorithm for solving large scale economic load dispatch (ELD) problems in power networks. To realize the ELD, the valve-point loading effect, system load demand, power losses, ramp rate limits and prohibited operation zones are considered here. Simulations were performed on four different power systems with 3, 6, 15 and 40 generating units and the results are compared with two forms of power systems, one power system is with a wind power generator and other power system is without a wind power generator. The results of this study reveal that the proposed approach is able to find appreciable ELD solutions than those of previous algorithms.


Energies ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2530 ◽  
Author(s):  
Luigi Cimorelli ◽  
Carmine Covelli ◽  
Bruno Molino ◽  
Domenico Pianese

Greenhouse gas emission is one of the main environmental issues of today, and energy savings in all industries contribute to reducing energy demand, implying, in turn, less carbon emissions into the atmosphere. In this framework, water pumping systems are one of the most energy-consuming activities. The optimal regulation of pumping systems with the use of variable speed drives is gaining the attention of designers and managing authorities. However, optimal management and operation of pumping systems is often performed, employing variable speed drives without considering if the energy savings are enough to justify their purchasing and installation costs. In this paper, the authors compare two optimal pump scheduling techniques, optimal regulation of constant speed pumps by an optimal ON/OFF sequence and optimal regulation with a variable speed pump. Much of the attention is devoted to the analysis of the costs involved in a hypothetical managing authority for the water distribution system in order to determine whether the savings in operating costs is enough to justify the employment of variable speed drives.


Sign in / Sign up

Export Citation Format

Share Document