scholarly journals A Comparison between Ketamine and Diazepam as Induction Agents for Pericardiectomy

1978 ◽  
Vol 6 (1) ◽  
pp. 66-70 ◽  
Author(s):  
H. G. G. Kingston ◽  
K. W. Bretherton ◽  
A. M. Holloway ◽  
and J. W. Downing

Ketamine 1 · 0 mg/kg and diazepam 0 · 3 mg/kg was used to induce anaesthesia in patients requiring pericardiectomy. A significant rise in blood pressure in patients receiving ketamine was noted. In contrast, a fall in blood pressure was seen when diazepam was administered. Changes in cardiac output, cardiac index, central venous pressure and systemic vascular resistance are discussed. Ketamine appears to be a more satisfactory agent for induction of anaesthesia in patients for pericardiectomy, whereas diazepam should be used with caution.

2019 ◽  
Author(s):  
Wei Tan ◽  
Dong-chen Qian ◽  
Meng-meng Zheng ◽  
Xuan Lu ◽  
Yuan Han ◽  
...  

Abstract Background: The infusion of magnesium sulfate is well known to reduce arterial pressure and attenuate hemodynamic response to pneumoperitoneum. This study aimed to investigate whether different doses of magnesium sulfate can effectively attenuate the pneumoperitoneum-related hemodynamic changes and the release of vasopressin in patients undergoing laparoscopic gastrointestinal surgery. Methods: Sixty-nine patients undergoing laparoscopic partial gastrectomy were randomized into three groups: group L received magnesium sulfate 30 mg/kg loading dose and 15 mg/kg/h continuous maintenance infusion for 1 h; group H received magnesium sulfate 50 mg/kg followed by 30 mg/kg/h for 1 h; and group S (control group) received same volume 0.9% saline infusion, immediately before the induction of pneumoperitoneum. Systemic vascular resistance (SVR), cardiac output (CO), mean arterial pressure (MAP), heart rate (HR), central venous pressure(CVP), serum vasopressin and magnesium concentrations were measured. The extubation time, visual analogue scale were also assessed. The primary outcome is the difference in SVR between different groups. The secondary outcome is the differences of other indicators between groups, such as CO, MAP, HR, CVP, vasopressin and postoperative pain score. Results: Pneumoperitoneum instantly resulted in a significant reduction of cardiac output and an increase in mean arterial pressure, systemic vascular resistance, central venous pressure and heart rate in the control group (P < 0.01). The mean arterial pressure (T2 – T4), systemic vascular resistance (T2 – T3), central venous pressure(T3-T5) and the level of serum vasopressin were significantly lower (P < 0.05) and the cardiac output (T2 – T3) was significantly higher (P < 0.05) in group H than those in the control group. The mean arterial pressure (T4), systemic vascular resistance (T2), and central venous pressure(T3-T4) were significantly lower in group H than those in group L (P < 0.05). Furthermore, the visual analog scales at 5 min and 20 min, the level of vasopressin, and the dose of remifentanil were significantly decreased in group H compared to the control group and group L (P < 0.01). Conclusion: Magnesium sulfate could safely and effectively attenuate the pneumoperitoneum-related hemodynamic instability during gastrointestinal laparoscopy and improve postoperative pain at serum magnesium concentrations above 2 mmol/L.


2019 ◽  
Author(s):  
Wei Tan ◽  
Dong-chen Qian ◽  
Meng-meng Zheng ◽  
Xuan Lu ◽  
Yuan Han ◽  
...  

Abstract Background: The infusion of magnesium sulfate is well known to reduce arterial pressure and attenuate hemodynamic response to pneumoperitoneum. This study aimed to investigate whether different doses of magnesium sulfate can effectively attenuate the pneumoperitoneum-related hemodynamic changes and the release of vasopressin in patients undergoing laparoscopic gastrointestinal surgery. Methods: Sixty-nine patients undergoing laparoscopic partial gastrectomy were randomized into three groups: group L received magnesium sulfate 30 mg/kg loading dose and 15 mg/kg/h continuous maintenance infusion for 1 h; group H received magnesium sulfate 50 mg/kg followed by 30 mg/kg/h for 1 h; and group S (control group) received same volume 0.9% saline infusion, immediately before the induction of pneumoperitoneum. Systemic vascular resistance (SVR), cardiac output (CO), mean arterial pressure (MAP), heart rate (HR), central venous pressure(CVP), serum vasopressin and magnesium concentrations were measured. The extubation time, visual analogue scale were also assessed. The primary outcome is the difference in SVR between different groups. The secondary outcome is the differences of other indicators between groups, such as CO, MAP, HR, CVP, vasopressin and postoperative pain score. Results: Pneumoperitoneum instantly resulted in a significant reduction of cardiac output and an increase in mean arterial pressure, systemic vascular resistance, central venous pressure and heart rate in the control group (P < 0.01). The mean arterial pressure (T2 – T4), systemic vascular resistance (T2 – T3), central venous pressure(T3-T5) and the level of serum vasopressin were significantly lower (P < 0.05) and the cardiac output (T2 – T3) was significantly higher (P < 0.05) in group H than those in the control group. The mean arterial pressure (T4), systemic vascular resistance (T2), and central venous pressure(T3-T4) were significantly lower in group H than those in group L (P < 0.05). Furthermore, the visual analog scales at 5 min and 20 min, the level of vasopressin, and the dose of remifentanil were significantly decreased in group H compared to the control group and group L (P < 0.01). Conclusion: Magnesium sulfate could safely and effectively attenuate the pneumoperitoneum-related hemodynamic instability during gastrointestinal laparoscopy and improve postoperative pain at serum magnesium concentrations above 2 mmol/L.


2019 ◽  
Vol 43 (3) ◽  
pp. 423-429 ◽  
Author(s):  
Etain A. Tansey ◽  
Laura E. A. Montgomery ◽  
Joe G. Quinn ◽  
Sean M. Roe ◽  
Christopher D. Johnson

An understanding of the complexity of the cardiovascular system is incomplete without a knowledge of the venous system. It is important for students to understand that, in a closed system, like the circulatory system, changes to the venous side of the circulation have a knock-on effect on heart function and the arterial system and vice versa. Veins are capacitance vessels feeding blood to the right side of the heart. Changes in venous compliance have large effects on the volume of blood entering the heart and hence cardiac output by the Frank-Starling Law. In healthy steady-state conditions, venous return has to equal cardiac output, i.e., the heart cannot pump more blood than is delivered to it. A sound understanding of the venous system is essential in understanding how changes in cardiac output occur with changes in right atrial pressure or central venous pressure, and the effect these changes have on arterial blood pressure regulation. The aim of this paper is to detail simple hands-on physiological assessments that can be easily undertaken in the practical laboratory setting and that illustrate some key functions of veins. Specifically, we illustrate that venous valves prevent the backflow of blood, that venous blood pressure increases from the heart to the feet, that the skeletal muscle pump facilitates venous return, and we investigate the physiological and clinical significance of central venous pressure and how it may be assessed.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Wei Tan ◽  
Dong-chen Qian ◽  
Meng-meng Zheng ◽  
Xuan Lu ◽  
Yuan Han ◽  
...  

Abstract Background The infusion of magnesium sulfate is well known to reduce arterial pressure and attenuate hemodynamic response to pneumoperitoneum. This study aimed to investigate whether different doses of magnesium sulfate can effectively attenuate the pneumoperitoneum-related hemodynamic changes and the release of vasopressin in patients undergoing laparoscopic gastrointestinal surgery. Methods Sixty-nine patients undergoing laparoscopic partial gastrectomy were randomized into three groups: group L received magnesium sulfate 30 mg/kg loading dose and 15 mg/kg/h continuous maintenance infusion for 1 h; group H received magnesium sulfate 50 mg/kg followed by 30 mg/kg/h for 1 h; and group S (control group) received same volume 0.9% saline infusion, immediately before the induction of pneumoperitoneum. Systemic vascular resistance (SVR), cardiac output (CO), mean arterial pressure (MAP), heart rate (HR), central venous pressure (CVP), serum vasopressin and magnesium concentrations were measured. The extubation time, visual analogue scale were also assessed. The primary outcome is the difference in SVR between different groups. The secondary outcome is the differences of other indicators between groups, such as CO, MAP, HR, CVP, vasopressin and postoperative pain score. Results Pneumoperitoneum instantly resulted in a significant reduction of cardiac output and an increase in mean arterial pressure, systemic vascular resistance, central venous pressure and heart rate in the control group (P <  0.01). The mean arterial pressure (T2 – T4), systemic vascular resistance (T2 – T3), central venous pressure(T3-T5) and the level of serum vasopressin were significantly lower (P <  0.05) and the cardiac output (T2 – T3) was significantly higher (P <  0.05) in group H than those in the control group. The mean arterial pressure (T4), systemic vascular resistance (T2), and central venous pressure(T3-T4) were significantly lower in group H than those in group L (P <  0.05). Furthermore, the visual analog scales at 5 min and 20 min, the level of vasopressin, and the dose of remifentanil were significantly decreased in group H compared to the control group and group L (P <  0.01). Conclusion Magnesium sulfate could safely and effectively attenuate the pneumoperitoneum-related hemodynamic instability during gastrointestinal laparoscopy and improve postoperative pain at serum magnesium concentrations above 2 mmol/L. Trial registration The study was retrospectively registered at Chinese Clinical Trial Registry; the registration number is ChiCTR-IPD-17011145, principal investigator: D.Y. Q., date of registration: April 13, 2017.


2019 ◽  
Author(s):  
Wei Tan ◽  
Dong-chen Qian ◽  
Meng-meng Zheng ◽  
Xuan Lu ◽  
Yuan Han ◽  
...  

Abstract Background: The infusion of magnesium sulfate is well known to reduce arterial pressure and attenuate hemodynamic response to pneumoperitoneum. This study aimed to investigate whether different doses of magnesium sulfate can effectively attenuate the pneumoperitoneum-related hemodynamic changes and the release of vasopressin in patients undergoing laparoscopic gastrointestinal surgery. Methods: Sixty-nine patients undergoing laparoscopic partial gastrectomy were randomized into three groups: group L received magnesium sulfate 30 mg/kg loading dose and 15 mg/kg/h continuous maintenance infusion for 1 h; group H received magnesium sulfate 50 mg/kg followed by 30 mg/kg/h for 1 h; and group S (control group) received same volume 0.9% saline infusion, immediately before the induction of pneumoperitoneum. Systemic vascular resistance (SVR), cardiac output (CO), mean arterial pressure (MAP), heart rate (HR), central venous pressure(CVP), serum vasopressin and magnesium concentrations were measured. The extubation time, visual analogue scale were also assessed. The primary outcome is the difference in SVR between different groups. The secondary outcome is the differences of other indicators between groups, such as CO, MAP, HR, CVP, vasopressin and postoperative pain score. Results: Pneumoperitoneum instantly resulted in a significant reduction of cardiac output and an increase in mean arterial pressure, systemic vascular resistance, central venous pressure and heart rate in the control group (P < 0.01). The mean arterial pressure (T2 – T4), systemic vascular resistance (T2 – T3), central venous pressure(T3-T5) and the level of serum vasopressin were significantly lower (P < 0.05) and the cardiac output (T2 – T3) was significantly higher (P < 0.05) in group H than those in the control group. The mean arterial pressure (T4) , systemic vascular resistance (T2) and central venous pressure(T3-T4) were significantly lower in group H than those in group L (P < 0.05). Furthermore, the visual analogue scales at 5 min and 20 min, the level of vasopressin, and the dosage of remifentanil were significantly decreased in group H compared to the control group and group L (P < 0.01). Conclusion: Magnesium sulfate could safely and effectively attenuate the pneumoperitoneum-related hemodynamic instability during gastrointestinal laparoscopy and improve postoperative pain at serum magnesium concentrations above 2 mmol/L.


1959 ◽  
Vol 197 (5) ◽  
pp. 1005-1007 ◽  
Author(s):  
Calvin Hanna ◽  
Patricia B. McHugo ◽  
William H. MacMillan

The cardiovascular actions of intravenous histamine, in doses from 2.5 to 20 µg/kg of the free base, were studied in the pentobarbitalized dog using the dye dilution method. With the small dose there was a consistent but small initial increase in cardiac output and with the larger doses there was a biphasic change in output. Cardiac rate, central venous pressure, central blood volume, hematocrit and the mean circulation time were essentially unchanged. Infusions of histamine and of potassium chloride at the rate of 1 µg and 1 mg/kg/min., respectively, moderately increased the cardiac output. Potassium chloride had no effect on the arterial blood pressure, cardiac rate and central venous pressure. Both the infusion of potassium chloride and injection of histamine produced a comparable elevation of the plasma potassium. It is possible that the actions of histamine to increase the plasma potassium contribute to the cardiovascular actions of this amine, especially on the cardiac output.


1982 ◽  
Vol 62 (1) ◽  
pp. 51-56 ◽  
Author(s):  
R. Hatton ◽  
D. P. Clough ◽  
S. A. Adigun ◽  
J. Conway

1. Lower-body negative pressure (LBNP) was used to stimulate sympathetic reflexes in anaesthetized cats. At −50 mmHg for 10 min it caused transient reduction in central venous pressure and systemic arterial blood pressure. Arterial blood pressure was then restored within 30 s and there was a tachycardia. Central venous pressure showed only partial recovery. The resting level of plasma renin activity (PRA; 2.9–3.2 ng h−1 ml−1) did not change until approximately 5 min into the manoeuvre. 2. When converting-enzyme inhibitor (CEI) was given 75 s after the onset of suction it caused a greater and more sustained fall in arterial blood pressure than when administered alone. The angiotensin II (ANG II) antagonist [Sar1,Ala8]ANG II produced similar effects after a short-lived pressor response. 3. This prolonged fall in arterial blood pressure produced by CEI was not associated with reduced sympathetic efferent nerve activity. This indicates that the inhibitor affects one of the peripheral actions of angiotensin and in so doing produces vasodilatation of neurogenic origin. 4. These findings suggest that angiotensin, at a level which does not exert a direct vasoconstrictor action, interacts with the sympathetic nervous system to maintain arterial blood pressure when homeostatic reflexes are activated. A reduction in the efficiency of these reflexes by CEI may contribute to its hypotensive effect.


1992 ◽  
Vol 263 (6) ◽  
pp. R1303-R1308 ◽  
Author(s):  
T. J. Ebert ◽  
L. Groban ◽  
M. Muzi ◽  
M. Hanson ◽  
A. W. Cowley

Brief low-dose infusions of atrial natriuretic peptide (ANP) that emulate physiological plasma concentrations in humans have little if any effect on renal excretory function. This study explored the possibility that ANP-mediated reductions in cardiac filling pressures (through ANP's rapid effect on capillary dynamics) could attenuate its purported renal effects. Protocol A consisted of 16 healthy subjects (ages 19-27 yr old) who underwent three consecutive 45-min experimental sequences: 1) placebo, 2) ANP (10 ng.kg-1 x min-1), and 3) ANP alone (n = 8) or ANP with simultaneous lower body positive pressure (LBPP, n = 8). Electrocardiogram and direct measures of arterial and central venous pressures were continuously monitored. Blood was sampled at the end of each 45-min sequence before subjects stood to void. Compared with control (placebo), ANP produced a hemoconcentration and increased plasma norepinephrine, but did not change heart rate, blood pressure, plasma levels of renin, aldosterone, or vasopressin, or renal excretion of volume or sodium. In subjects receiving LBPP to maintain central venous pressure during the last 45 min of ANP infusion, norepinephrine did not increase and urine volume and sodium excretion increased (P < 0.05). In a second study (protocol B), five healthy subjects received a placebo infusion for 45 min followed by two consecutive 45-min infusions of ANP (10 ng.kg-1 x min-1). Central venous pressure was maintained (LBPP) at placebo baseline throughout the two ANP infusion periods. Urine volume and sodium excretion rates increased progressively and significantly during both ANP infusion periods (P < 0.05) without significant changes in creatinine clearance, blood pressure, or heart rate.(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document