scholarly journals Resting state connectivity between default mode network and insula encodes acute migraine headache

Cephalalgia ◽  
2017 ◽  
Vol 38 (5) ◽  
pp. 846-854 ◽  
Author(s):  
Gianluca Coppola ◽  
Antonio Di Renzo ◽  
Emanuele Tinelli ◽  
Cherubino Di Lorenzo ◽  
Marco Scapeccia ◽  
...  

Background Previous functional MRI studies have revealed that ongoing clinical pain in different chronic pain syndromes is directly correlated to the connectivity strength of the resting default mode network (DMN) with the insula. Here, we investigated seed-based resting state DMN-insula connectivity during acute migraine headaches. Methods Thirteen migraine without aura patients (MI) underwent 3 T MRI scans during the initial six hours of a spontaneous migraine attack, and were compared to a group of 19 healthy volunteers (HV). We evaluated headache intensity with a visual analogue scale and collected seed-based MRI resting state data in the four core regions of the DMN: Medial prefrontal cortex (MPFC), posterior cingulate cortex (PCC), and left and right inferior parietal lobules (IPLs), as well as in bilateral insula. Results Compared to HV, MI patients showed stronger functional connectivity between MPFC and PCC, and between MPFC and bilateral insula. During migraine attacks, the strength of MPFC-to-insula connectivity was negatively correlated with pain intensity. Conclusion We show that greater subjective intensity of pain during a migraine attack is associated with proportionally weaker DMN-insula connectivity. This is at variance with other chronic extra-cephalic pain disorders where the opposite was found, and may thus be a hallmark of acute migraine head pain.

2019 ◽  
Vol 53 (8) ◽  
pp. 794-806 ◽  
Author(s):  
Jooyoung Oh ◽  
Jung Eun Shin ◽  
Kyu Hyun Yang ◽  
Sunghyon Kyeong ◽  
Woo Suk Lee ◽  
...  

Objective: Delirium is an acute brain failure related to uncertain problems in neural connectivity, including aberrant functional interactions between remote cortical regions. This study aimed to elucidate the underlying neural mechanisms of delirium by clarifying the changes in resting-state functional connectivity induced by postoperative delirium using imaging data scanned before and after surgery. Method: Fifty-eight patients with a femoral neck fracture were preoperatively scanned using resting-state functional magnetic resonance imaging. Twenty-five patients developed postoperative delirium, and 14 of those had follow-up scans during delirium. Eighteen patients without delirium completed follow-up scans 5 or 6 days after surgery. We assessed group differences in voxel-based connectivity, in which the seeds were the posterior cingulate cortex, medial prefrontal cortex and 11 subcortical regions. Connections between the subcortical regions were also examined. Results: The results showed four major findings during delirium. Both the posterior cingulate cortex and medial prefrontal cortex were strongly connected to the dorsolateral prefrontal cortex. The posterior cingulate cortex had hyperconnectivity with the inferior parietal lobule, whereas the medial prefrontal cortex had hyperconnectivity with the frontopolar cortex and hypoconnectivity with the superior frontal gyrus. Connectivity of the striatum with the anterior cingulate cortex and insula was increased. Disconnections were found between the lower subcortical regions including the neurotransmitter origins and the striatum/thalamus in the upper level. Conclusions: Our findings suggest that cortical dysfunction during delirium is characterized by a diminution of the anticorrelation between the default mode network and task-positive regions, excessive internal connections in the posterior default mode network and a complex imbalance of internal connectivity in the anterior default mode network. These dysfunctions can be attributed to the loss of reciprocity between the default mode network and central executive network associated with defective function in the salience network, which might be closely linked to aberrant subcortical neurotransmission-related connectivity and striato-cortical connectivity.


2019 ◽  
Author(s):  
Kevin J. Clancy ◽  
Jeremy A. Andrzejewski ◽  
Mingzhou Ding ◽  
Norman B. Schmidt ◽  
Wen Li

ABSTRACTBackgroundAnomalies in default mode network (DMN) activity and alpha (8-12 Hz) oscillations have been independently observed in posttraumatic stress disorder (PTSD). Recent spatiotemporal analyses suggest that alpha oscillations support DMN functioning via inter-regional synchronization and sensory cortical inhibition. Therefore, we examined a unifying pathology of alpha deficits in the visual-cortex-DMN system in PTSD.MethodsPatients with PTSD (N = 25) and two control groups—patients with Generalized Anxiety Disorder (N = 24) and healthy controls (N = 20)—underwent a standard eyes-open resting state (S-RS) and a modified resting state (M-RS) of passively viewing salient images (known to deactivate the DMN). High-density electroencephalogram (hdEEG) were recorded, from which intracortical alpha activity (power and connectivity/Granger causality) was extracted using the exact low-resolution electromagnetic tomography (eLORETA).ResultsPatients with PTSD (vs. controls) demonstrated attenuated alpha power in the visual cortex and key hubs of the DMN (posterior cingulate cortex/PCC and medial prefrontal cortex/mPFC) at both states, the severity of which further correlated with hypervigilance symptoms. With increased visual input (at M-RS vs. S-RS), patients with PTSD further demonstrated reduced alpha-frequency directed connectivity within the DMN (PCC→mPFC) and, importantly, from the visual cortex (VC) to both DMN hubs (VC→PCC and VC→mPFC), linking alpha deficits in the two systems.ConclusionsThese interrelated alpha deficits align with DMN hypoactivity/hypoconnectivity, sensory disinhibition, and hypervigilance in PTSD, representing a unifying neural underpinning of these anomalies. The identification of visual-cortex-DMN alpha dysrhythmia in PTSD further presents a novel therapeutic target, promoting network-based intervention of neural oscillations.


2017 ◽  
Vol 114 (36) ◽  
pp. 9713-9718 ◽  
Author(s):  
Wei Tang ◽  
Hesheng Liu ◽  
Linda Douw ◽  
Mark A. Kramer ◽  
Uri T. Eden ◽  
...  

Segregation and integration are distinctive features of large-scale brain activity. Although neuroimaging studies have been unraveling their neural correlates, how integration takes place over segregated modules remains elusive. Central to this problem is the mechanism by which a brain region adjusts its activity according to the influence it receives from other regions. In this study, we explore how dynamic connectivity between two regions affects the neural activity within a participating region. Combining functional magnetic resonance imaging (fMRI) and magnetoencephalography (MEG) in the same group of subjects, we analyzed resting-state data from the core of the default-mode network. We observed directed influence from the posterior cingulate cortex (PCC) to the anterior cingulate cortex (ACC) in the 10-Hz range. This time-varying influence was associated with the power alteration in the ACC: strong influence corresponded with a decrease of power around 13–16 Hz and an increase of power in the lower (1–7 Hz) and higher (30–55 Hz) ends of the spectrum. We also found that the amplitude of the 30- to 55-Hz activity was coupled to the phase of the 3- to 4-Hz activity in the ACC. These results characterized the local spectral changes associated with network interactions. The specific spectral information both highlights the functional roles of PCC–ACC connectivity in the resting state and provides insights into the dynamic relationship between local activity and coupling dynamics of a network.


2017 ◽  
Vol 10 (1) ◽  
Author(s):  
Andrea Edit Edes ◽  
Lajos Rudolf Kozak ◽  
Mate Magyar ◽  
Terezia Zsombok ◽  
Gyongyi Kokonyei ◽  
...  

2022 ◽  
Author(s):  
Hadley Rahrig ◽  
David R. Vago ◽  
Matthew Passarelli ◽  
Allison Auten ◽  
Nicholas A. Lynn ◽  
...  

Abstract This meta-analysis sought to expand upon neurobiological models of mindfulness through investigation of inherent brain network connectivity outcomes, indexed via resting state functional connectivity (rsFC). We conducted a systematic review and meta-analysis of rsFC as an outcome of mindfulness training (MT) relative to structurally-equivalent programs, with the hypothesis that that MT would increase cross-network connectivity between nodes of the Default Mode Network (DMN), Salience Network (SN), and Frontoparietal Control Network (FPCN) as a mechanism of internally-oriented attentional control. Texts were identified from the databases: MEDLINE/PubMed, ERIC, PSYCINFO, ProQuest, Scopus, and Web of Sciences; and were screened for inclusion based on experimental/quasi-experimental trial design and use of standardized mindfulness-based interventions. RsFC effects were extracted from twelve studies (mindfulness n = 226; control n = 204). Voxel-based meta-analysis revealed significantly greater rsFC (MT > control) between the left middle cingulate (Hedge’s g = .234, p = 0288, I2 = 15.87), located within the SN, and the posterior cingulate cortex, a focal hub of the DMN. Egger’s test for publication bias was nonsignificant, bias = 2.17, p = .162. In support of our hypothesis, results suggest that MT targets internetwork (SN-DMN) connectivity implicated in the flexible control of internally-oriented attention.


2016 ◽  
Vol 26 ◽  
pp. S300-S301
Author(s):  
A.E. Edes ◽  
L.R. Kozák ◽  
G. Kökönyei ◽  
T. Zsombók ◽  
G. Bagdy ◽  
...  

2018 ◽  
Vol 24 (3) ◽  
pp. 447-455 ◽  
Author(s):  
Felipe Almeida Picon ◽  
João Ricardo Sato ◽  
Maurício Anés ◽  
Leonardo Modesti Vedolin ◽  
Alessandro André Mazzola ◽  
...  

Objective: This study evaluated the hypothesis that methylphenidate immediate release (MPH-IR) treatment would improve Default Mode Network (DMN) within-connectivity. Method: Resting-state functional connectivity of the main nodes of DMN was evaluated in a highly homogeneous sample of 18 drug-naive male adult participants with ADHD. Results: Comparing resting-state functional connectivity functional magnetic resonance imaging (R-fMRI) scans before and after MPH treatment focusing exclusively on within-DMN connectivity, we evidenced the strengthening of functional connectivity between two nodes of the DMN: posterior cingulate cortex (PCC) and left lateral parietal cortex (LLP). Conclusion: Our results contribute to the further understanding on how MPH affects functional connectivity within DMN of male adults with ADHD and corroborate the hypothesis of ADHD being a delayed neurodevelopmental disorder.


2014 ◽  
Vol 45 (01) ◽  
Author(s):  
G Mingoia ◽  
K Langbein ◽  
M Dietzek ◽  
G Wagner ◽  
S Smesny ◽  
...  

NeuroImage ◽  
2021 ◽  
Vol 226 ◽  
pp. 117581
Author(s):  
Fengmei Fan ◽  
Xuhong Liao ◽  
Tianyuan Lei ◽  
Tengda Zhao ◽  
Mingrui Xia ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document