scholarly journals Automated Object Detection, Mapping, and Assessment of Roadside Clear Zones Using Lidar Data

Author(s):  
Maged Gouda ◽  
Bruno Arantes de Achilles Mello ◽  
Karim El-Basyouny

This paper proposes a fully automated approach to map and assess roadside clearance parameters using mobile Light Detection and Ranging (lidar) data on rural highways. Compared with traditional manual surveying methods, lidar data could provide a more efficient and cost-effective source to extract roadside information. This study proposes a novel voxel-based raycasting approach focused primarily on automating roadside mapping and assessment. First, the scanning vehicle trajectory is extracted. Pavement surface points are then detected, and a method is proposed to extract pavement edge trajectories. Once pavement edges are extracted, guardrails were identified using a conical frustum emitted from the edge trajectory points. Target points and flexion points are then generated and located on the roadside, and a voxel-based raycasting approach is used to search for roadside obstacles and query their locations. Finally, roadside slopes and embankment heights were mapped at specific intervals, and roadside design guidelines and requirements were automatically checked against the mapping results. Noncompliant locations with substandard conditions were automatically queried. The method was tested on four highway segments in Alberta, Canada. The accuracy of the edge detection reached up to 98.5%. Furthermore, the method proved to be accurate in object detection, being able to detect all obstructions on the roadside in each tested segment. The proposed method can help transportation authorities automatically map and inventory roadside clearance parameters. Moreover, the safety performance of existing road infrastructure can be studied using collected information and crash data to support decision making on road maintenance and upgrades.

Author(s):  
Cristian Cocconcelli ◽  
Bongsuk Park ◽  
Jian Zou ◽  
George Lopp ◽  
Reynaldo Roque

Reflective cracking is frequently reported as the most common distress affecting resurfaced pavements. An asphalt rubber membrane interlayer (ARMI) approach has been traditionally used in Florida to mitigate reflective cracking. However, recent field evidence has raised doubts about the effectiveness of the ARMI when placed near the surface, indicating questionable benefits to reflective cracking and increased instability rutting potential. The main purpose of this research was to develop guidelines for an effective alternative to the ARMI for mitigation of near-surface reflective cracking in overlays on asphalt pavement. Fourteen interlayer mixtures, covering three aggregate types widely used in Florida, and two nominal maximum aggregate sizes (NMAS) were designed according to key characteristics identified for mitigation of reflective cracking, that is, sufficient gradation coarseness and high asphalt content. The dominant aggregate size range—interstitial component (DASR-IC) model was used for the design of all mixture gradations. A composite specimen interface cracking (CSIC) test was employed to evaluate reflective cracking performance of interlayer systems. In addition, asphalt pavement analyzer (APA) tests were performed to determine whether the interlayer mixtures had sufficient rutting resistance. The results indicated that interlayer mixtures designed with lower compaction effort, reduced design air voids, and coarser gradation led to more cost-effective fracture-tolerant and shear-resistant (FTSR) interlayers. Therefore, preliminary design guidelines including minimum effective film thickness and maximum DASR porosity requirements were proposed for 9.5-mm NMAS (35 µm and 50%) and 4.75-mm NMAS FTSR mixtures (20 µm and 60%) to mitigate near-surface reflective cracking.


Author(s):  
Robert Rice ◽  
Rand Decker ◽  
Newel Jensen ◽  
Ralph Patterson ◽  
Stanford Singer

The growth of winter travel on alpine roads in the western United States, a result of the demand for reliable winter access, has increased the hazard to motorists and highway maintenance personnel from snow avalanches. Configurations are presented for systems that can detect and provide, in real time, warnings to motorists and highway maintainers of roadway avalanches. These warnings include on-site traffic control signing, in-vehicle audio alarms for winter maintenance vehicles, and notifying maintenance facilities or centralized agency dispatchers. These avalanche detection and warning systems can detect an existing avalanche and use the avalanche’s remaining time of descent to initiate on-site alarms. Alternatively, real-time knowledge and notification of the onset of avalanching may be used to proactively manage the evolving hazard over an affected length or corridor of highway. These corridors can be several tens of kilometers in length and may be very remote, low-volume rural highways. As a consequence, these detection and warning systems must be cost-effective alternatives to existing avalanche hazard reduction technology. Results and experiences from the winters of 1997–1998 and 1998–1999 are presented, along with recommendations and criteria for future deployment of these automated natural hazard reduction systems for rural transportation corridors.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Aschalew Kassu ◽  
Michael Anderson

This study examines the effects of wet pavement surface conditions on the likelihood of occurrences of nonsevere crashes in two- and four-lane urban and rural highways in Alabama. Initially, sixteen major highways traversing across the geographic locations of the state were identified. Among these highways, the homogenous routes with equal mean values, variances, and similar distributions of the crash data were identified and combined to form crash datasets occurring on dry and wet pavements separately. The analysis began with thirteen explanatory variables covering engineering, environmental, and traffic conditions. The principal terms were statistically identified and used in a mathematical crash frequency models developed using Poisson and negative binomial regression models. The results show that the key factors influencing nonsevere crashes on wet pavement surfaces are mainly segment length, traffic volume, and posted speed limits.


Automated object detection algorithm is an important research challenge in intelligent urban surveillance systems for Internet of Things (IoT) and smart cities applications. In particular, smart vehicle license plate recognition and vehicle detection are recognized as core research issues of these IoTdriven intelligent urban surveillance systems. They are key techniques in most of the traffic related IoT applications, such as road traffic real-time monitoring, security control of restricted areas, automatic parking access control, searching stolen vehicles, etc. In this paper, we propose a novel unified method of automated object detection for urban surveillance systems. We use this novel method to determine and pick out the highest energy frequency areas of the images from the digital camera imaging sensors, that is, either to pick the vehicle license plates or the vehicles out from the images. The other sensors like flame and ultrasonic sensor are used to monitor nearby objects. Our proposed method can not only help to detect object vehicles rapidly and accurately, but also can be used to reduce big data volume needed to be stored in urban surveillance systems


Sign in / Sign up

Export Citation Format

Share Document