vehicle trajectory
Recently Published Documents


TOTAL DOCUMENTS

698
(FIVE YEARS 327)

H-INDEX

26
(FIVE YEARS 8)

Author(s):  
Surendran PN ◽  
Satheesh Kumar KRP

The primary thought of this review is to assess the impact absorbance, strength and durability properties using non-linear finite element simulations of analytical model of crash barriers. Before manufacturing and erection of crash barriers on site are generally simulated for impact performance using finite element analysis various parameters are checked such as 1) Crash performance 2) Vehicle trajectory after collision 3) Safety of the vehicular occupant.


Astrodynamics ◽  
2022 ◽  
Vol 6 (1) ◽  
pp. 81-91
Author(s):  
Haogong Wei ◽  
Wei Rao ◽  
Guangqiang Chen ◽  
Guidong Wang ◽  
Xin Zou ◽  
...  

AbstractThe Tianwen-1 Mars entry vehicle successfully landed on the surface of Mars in southern Utopia Planitia on May 15, 2021, at 7:18 (UTC+8). To acquire valuable Martian flight data, a scientific instrumentation package consisting of a flush air data system and a multilayer temperature-sensing system was installed aboard the entry vehicle. A combined approach was applied in the entry, descent, and landing trajectory reconstruction using all available data obtained by the inertial measurement unit and the flush air data system. An aerodynamic database covering the entire flight regime was generated using computational fluid dynamics methods to assist in the reconstruction process. A preliminary analysis of the trajectory reconstruction result, along with the atmosphere reconstruction and aerodynamic performance, was conducted. The results show that the trajectory agrees closely with the nominal trajectory and the wind-relative attitude. Suspected wind occurred at the end of the trajectory.


2022 ◽  
Vol 2022 ◽  
pp. 1-8
Author(s):  
Junfang Song ◽  
Yao Fan ◽  
Huansheng Song ◽  
Haili Zhao

In traffic scenarios, vehicle trajectories can provide almost all the dynamic information of moving vehicles. Analyzing the vehicle trajectory in the monitoring scene can grasp the dynamic road traffic information. Cross-camera association of vehicle trajectories in multiple cameras can break the isolation of target information between single cameras and obtain the overall road operation conditions in a large-scale video surveillance area, which helps road traffic managers to conduct traffic analysis, prediction, and control. Based on the framework of DBT automatic target detection, this paper proposes a cross-camera vehicle trajectory correlation matching method based on the Euclidean distance metric correlation of trajectory points. For the multitarget vehicle trajectory acquired in a single camera, we first perform 3D trajectory reconstruction based on the combined camera calibration in the overlapping area and then complete the similarity association between the cross-camera trajectories and the cross-camera trajectory update, and complete the trajectory transfer of the vehicle between adjacent cameras. Experiments show that the method in this paper can well solve the problem that the current tracking technology is difficult to match the vehicle trajectory under different cameras in complex traffic scenes and essentially achieves long-term and long-distance continuous tracking and trajectory acquisition of multiple targets across cameras.


Author(s):  
Ziyang Liu ◽  
Jie He ◽  
Changjian Zhang ◽  
Xintong Yan ◽  
Chenwei Wang ◽  
...  
Keyword(s):  

2022 ◽  
Author(s):  
Zhiyuan Zhao ◽  
Wei YAO ◽  
Pengzhou WANG ◽  
Sheng WU ◽  
Qunyong WU ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Qianxia Cao ◽  
Zhongxing Zhao ◽  
Qiaoqiong Zeng ◽  
Zhengwu Wang ◽  
Kejun Long

Real-time prediction of vehicle trajectory at unsignalized intersections is important for real-time traffic conflict detection and early warning to improve traffic safety at unsignalized intersections. In this study, we propose a robust real-time prediction method for turning movements and vehicle trajectories using deep neural networks. Firstly, a vision-based vehicle trajectory extraction system is developed to collect vehicle trajectories and their left-turn, go straight, and right-turn labels to train turning recognition models and multilayer LSTM deep neural networks for the prediction task. Then, when performing vehicle trajectory prediction, we propose the vehicle heading angle change trend method to recognize the future move of the target vehicle to turn left, go straight, and turn right based on the trajectory data characteristics of the target vehicle before passing the stop line. Finally, we use the trained multilayer LSTM models of turning left, going straight, and turning right to predict the trajectory of the target vehicle through the intersection. Based on the TensorFlow-GPU platform, we use Yolov5-DeepSort to automatically extract vehicle trajectory data at unsignalized intersections. The experimental results show that the proposed method performs well and has a good performance in both speed and accuracy evaluation.


Sign in / Sign up

Export Citation Format

Share Document