segment length
Recently Published Documents


TOTAL DOCUMENTS

677
(FIVE YEARS 177)

H-INDEX

43
(FIVE YEARS 4)

Rice ◽  
2022 ◽  
Vol 15 (1) ◽  
Author(s):  
Jiongjiong Fan ◽  
Hua Hua ◽  
Zhaowei Luo ◽  
Qi Zhang ◽  
Mengjiao Chen ◽  
...  

AbstractRice is one of the most important food crops in Asia. Genetic analyses of complex traits and molecular breeding studies in rice greatly rely on the construction of various genetic populations. Chromosome segment substitution lines (CSSLs) serve as a powerful genetic population for quantitative trait locus (QTL) mapping in rice. Moreover, CSSLs containing target genomic regions can be used as improved varieties in rice breeding. In this study, we developed a set of CSSLs consisting of 117 lines derived from the recipient ‘Huanghuazhan’ (HHZ) and the donor ‘Basmati Surkb 89–15’ (BAS). The 117 lines were extensively genotyped by whole-genome resequencing, and a high-density genotype map was constructed for the CSSL population. The 117 CSSLs covered 99.78% of the BAS genome. Each line contained a single segment, and the average segment length was 6.02 Mb. Using the CSSL population, we investigated three agronomic traits in Shanghai and Hangzhou, China, and a total of 25 QTLs were detected in both environments. Among those QTLs, we found that RFT1 was the causal gene for heading date variance between HHZ and BAS. RFT1 from BAS was found to contain a loss-of-function allele based on yeast two-hybrid assay, and its causal variation was a P to S change in the 94th amino acid of the RFT1 protein. The combination of high-throughput genotyping and marker-assisted selection (MAS) is a highly efficient way to construct CSSLs in rice, and extensively genotyped CSSLs will be a powerful tool for the genetic mapping of agronomic traits and molecular breeding for target QTLs/genes.


Author(s):  
A. A. Mistonov ◽  
I. S. Dubitskiy ◽  
A. H. A. Elmekawy ◽  
E. G. Iashina ◽  
S. V. Sotnichuk ◽  
...  

Author(s):  
Caitlin A. Gallo ◽  
Gabrielle N. Desrochers ◽  
Garett J. Morris ◽  
Chad D. Rumney ◽  
Sydney J. Sandell ◽  
...  

The purpose of this study was to assess changes in cervical musculature throughout contact-heavy collegiate ice hockey practices during a regular season of NCAA Division III ice hockey teams. In this cross-sectional study, 36 (male n = 13; female n = 23) ice hockey players participated. Data were collected over 3 testing sessions (baseline; pre-practice; post-practice). Neck circumference, neck length, head-neck segment length, isometric strength and electromyography (EMG) activity for flexion and extension were assessed. Assessments were completed approximately 1h before a contact-heavy practice and 15 min after practice. For sternocleidomastoid (SCM) muscles, males had significantly greater peak force and greater time to peak force versus females. For both left and right SCMs, both sexes had significantly greater peak EMG activity pre-practice versus baseline, and right (dominant side) SCM time to peak EMG activity was decreased post-practice compared to pre-practice. There were no significant differences for EMG activity of the upper trapezius musculature, over time or between sexes. Sex differences observed in SCM force and activation patterns of the dominant side SCM may contribute to head stabilization during head impacts. Our study is the first investigation to report changes in cervical muscle strength in men’s and women’s ice hockey players in the practical setting.


2021 ◽  
Vol 8 ◽  
Author(s):  
Zsolt Kőszegi ◽  
Balázs Berta ◽  
Gábor G. Tóth ◽  
Balázs Tar ◽  
Áron Üveges ◽  
...  

Background: The morphology and functional severity of coronary stenosis show poor correlation. However, in clinical practice, the visual assessment of the invasive coronary angiography is still the most common means for evaluating coronary disease. The fractional flow reserve (FFR), the coronary flow reserve (CFR), and the resting full-cycle ratio (RFR) are established indices to determine the hemodynamic significance of a coronary stenosis.Design/Methods: The READY register (NCT04857762) is a prospective, multicentre register of patients who underwent invasive intracoronary FFR and RFR measurement. The main aim of the registry is to compare the visual estimate of coronary lesions and the functional severity of the stenosis assessed by FFR, as well as the RFR pullback. Characterizations of the coronary vessel for predominantly focal, diffuse, or mixed type disease according to visual vs. RFR pullback determination will be compared. The secondary endpoint of the study is a composite of major adverse cardiac events, including death, myocardial infarction, and repeat coronary revascularization at 1 year. These endpoints will be compared in patients with non-ischemic FFR in the subgroup of cases where the local pressure drop indicates a focal lesion according to the definition of ΔRFR > 0.05 (for <25 mm segment length) and in the subgroup without significant ΔRFR. In case of an FFR value above 0.80, an extended physiological analysis is planned to diagnose or exclude microvascular disease using the CFR/FFR index. This includes novel flow dynamic modeling for CFR calculation (CFRp−3D).Conclusion: The READY register will define the effect of RFR measurement on visual estimation-based clinical decision-making. It can identify a prognostic value of ΔRFR during RFR pullback, and it would also explore the frequency of microvascular disease in the patient population with FFR > 0.80.Clinical Trial Registration:ClinicalTrials.gov (NCT04857762).


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Jinliang Yao ◽  
Runchuan Li ◽  
Shengya Shen ◽  
Wenzhi Zhang ◽  
Yan Peng ◽  
...  

Arrhythmia is a cardiovascular disease that seriously affects human health. The identification and diagnosis of arrhythmia is an effective means of preventing most heart diseases. In this paper, a BiLSTM-Treg algorithm that integrates rhythm information is proposed to realize the automatic classification of arrhythmia. Firstly, the discrete wavelet transform is used to denoise the ECG signal, based on which we performed heartbeat segmentation and preserved the timing relationship between heartbeats. Then, different heartbeat segment lengths and the BiLSTM network model are used to conduct multiple experiments to select the optimal heartbeat segment length. Finally, the tree regularization method is used to optimize the BiLSTM network model to improve classification accuracy. And the interpretability of the neural network model is analyzed by analyzing the simulated decision tree generated in the tree regularization method. This method divides the heartbeat into five categories (nonectopic (N), supraventricular ectopic (S), ventricular ectopic (V), fused heartbeats (F), and unknown heartbeats (Q)) and is validated on the MIT-BIH arrhythmia database. The results show that the overall classification accuracy of the algorithm is 99.32%. Compared with other methods of classifying heartbeat, the BiLSTM-Treg network model algorithm proposed in this paper not only improves the classification accuracy and obtains higher sensitivity and positive predictive value but also has higher interpretability.


Computation ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 130
Author(s):  
Connor J. C. McGuirk ◽  
Natalie Baddour ◽  
Edward D. Lemaire

New artificial intelligence- (AI) based marker-less motion capture models provide a basis for quantitative movement analysis within healthcare and eldercare institutions, increasing clinician access to quantitative movement data and improving decision making. This research modelled, simulated, designed, and implemented a novel marker-less AI motion-analysis approach for institutional hallways, a Smart Hallway. Computer simulations were used to develop a system configuration with four ceiling-mounted cameras. After implementing camera synchronization and calibration methods, OpenPose was used to generate body keypoints for each frame. OpenPose BODY25 generated 2D keypoints, and 3D keypoints were calculated and postprocessed to extract outcome measures. The system was validated by comparing ground-truth body-segment length measurements to calculated body-segment lengths and ground-truth foot events to foot events detected using the system. Body-segment length measurements were within 1.56 (SD = 2.77) cm and foot-event detection was within four frames (67 ms), with an absolute error of three frames (50 ms) from ground-truth foot event labels. This Smart Hallway delivers stride parameters, limb angles, and limb measurements to aid in clinical decision making, providing relevant information without user intervention for data extraction, thereby increasing access to high-quality gait analysis for healthcare and eldercare institutions.


2021 ◽  
Vol 49 (1) ◽  
Author(s):  
Nataša Janjić ◽  
◽  
Darko Kapor ◽  
Dragan Doder ◽  
Lana Doder ◽  
...  

The purpose of this study is to explain the influence of the time of start reaction tR to the results of sprinters in a 100 m run, using a new simple mathematical model based on the measured values for distance s, corresponding time t, and tR. The research is based on IAAF data obtained by measuring the segment length, the time of start reaction, transient times in 100 m run, and final times for the top sprinters C. Lewis (1988); M. Green (2011), and U. Bolt (2009) (men) and F. Griffith-Joyner (1988); E. Ashford (1988), and H. Drechsler (1988) (women). The values of the start reaction tR for both male and female top sprinters indicate that there appear no substantial differences in the values of tR based on gender which would directly favor male or female sprinters in achieving the top results in the 100m run. The influence of the time of start reaction tR decreases exponentially with the time t during the run (t>tR) and ends up at about 30 m, influencing the initial velocity vR although it is not directly related to the result of the run. Due to its applicative simplicity, the presented mathematical model and related conclusions can represent a solid basis for future studies concerning sprint running.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Hongyi Tu ◽  
Donglei Liu ◽  
Zhenbin Chen ◽  
Chunli Liu

Purpose Using a reversible addition fragmentation chain transfer reaction, a series of resins were prepared by using N, N-diethyl acrylamide (DEA), poly (ß-hydroxyethyl methacrylate) (PHEMA) as hydrophilic blocks and poly (glycidyl methacrylate) (PGMA) as hydrophobic blocks (and as a target for immobilizing penicillin G acylase [PGA]) and the low critical solution temperature (LCST) of which could be adjusted by changing the segment length of blocks. Design/methodology/approach To make the catalytic conversion temperature of immobilized PGA fallen into the temperature range of the sol state of thermosensitive block resin, a type of thermosensitive block resin, i.e. PDEA-b-PHEMA-b-PGMA (DHGs) was synthesized to immobilize PGA, and the effect of segment order of block resin was investigated on the performance of PGA. Findings Carrier prepared with monomers molar ratio of n(DEA) : n(HEMA): n(GMA) = 100: 49: 36 presented loading capacity (L) and enzyme activity recovery ratio (Ar) of 110 mg/g and 90%, respectively, and a block resin with LCST value of 33 °C was essential for keeping higher Ar of PGA. Originality/value PGA has become an important biocatalyst in modern chemistry industry. However, disadvantages include difficulty in separation, poor repeatability and high cost, which limits the scope of PGA applications. The effective method is to immobilize the enzyme to the carrier, which could overcome the disadvantage of free enzyme.


2021 ◽  
Vol 118 (47) ◽  
pp. e2107444118
Author(s):  
Ayoub Lassoued ◽  
Furu Zhang ◽  
Kazuhiro Kurokawa ◽  
Yan Liu ◽  
Marcel T. Bernucci ◽  
...  

Retinitis pigmentosa (RP) is the most common group of inherited retinal degenerative diseases, whose most debilitating phase is cone photoreceptor death. Perimetric and electroretinographic methods are the gold standards for diagnosing and monitoring RP and assessing cone function. However, these methods lack the spatial resolution and sensitivity to assess disease progression at the level of individual photoreceptor cells, where the disease originates and whose degradation causes vision loss. High-resolution retinal imaging methods permit visualization of human cone cells in vivo but have only recently achieved sufficient sensitivity to observe their function as manifested in the cone optoretinogram. By imaging with phase-sensitive adaptive optics optical coherence tomography, we identify a biomarker in the cone optoretinogram that characterizes individual cone dysfunction by stimulating cone cells with flashes of light and measuring nanometer-scale changes in their outer segments. We find that cone optoretinographic responses decrease with increasing RP severity and that even in areas where cone density appears normal, cones can respond differently than those in controls. Unexpectedly, in the most severely diseased patches examined, we find isolated cones that respond normally. Short-wavelength–sensitive cones are found to be more vulnerable to RP than medium- and long-wavelength–sensitive cones. We find that decreases in cone response and cone outer-segment length arise earlier in RP than changes in cone density but that decreases in response and length are not necessarily correlated within single cones.


Sign in / Sign up

Export Citation Format

Share Document