Driver Response Time in Cut-Off Scenarios from the Second Strategic Highway Research Program Naturalistic Database

Author(s):  
Swaroop Dinakar ◽  
Jeffrey W. Muttart ◽  
Darlene E. Edewaard ◽  
Michael Giannone ◽  
Connor Dickson

A cut-in or cut-off scenario involves a vehicle intruding into the path of another vehicle traveling in the same direction. These lane changes can lead to potentially dangerous situations, either a sideswipe or a rear-end crash. In this study, 552 cut-in events were analyzed, including four crash and 548 near-crash events from the Second Strategic Highway Research Program (SHRP-2) data set. Video and onboard-data-recorder data from the responding vehicle were used to analyze various factors associated with drivers’ responses. Driver response times were measured from three different event onsets, and the effects of different factors on the respective response times were measured. These factors included the behavior of the subject driver, the behavior of the intruding vehicle/principal other vehicle (POV), and different environmental and infrastructural factors. The results showed that drivers responded more slowly when the POV took longer to move laterally to the subject driver’s lane edge and faster when this time was short. Similarly, drivers responded faster to merging vehicles that started from a stop. Yet, response times were no different when the POV utilized a directional signal. These results point to a kinematic threshold involving lateral distance and lateral speed that best describes how drivers were triggered to respond. Drivers also responded faster near intersections, and at night. The results can be utilized to design crash mitigation systems in autonomous vehicles, as well as non-automated vehicles, to supplement human responses where their abilities may be lacking.

Sensors ◽  
2020 ◽  
Vol 20 (8) ◽  
pp. 2259 ◽  
Author(s):  
Chang Wang ◽  
Qinyu Sun ◽  
Zhen Li ◽  
Hongjia Zhang

Determining an appropriate time to execute a lane change is a critical issue for the development of Autonomous Vehicles (AVs).However, few studies have considered the rear and the front vehicle-driver’s risk perception while developing a human-like lane-change decision model. This paper aims to develop a lane-change decision model for AVs and to identify a two level threshold that conforms to a driver’s perception of the ability to safely change lanes with a rear vehicle approaching fast. Based on the signal detection theory and extreme moment trials on a real highway, two thresholds of safe lane change were determined with consideration of risk perception of the rear and the subject vehicle drivers, respectively. The rear vehicle’s Minimum Safe Deceleration (MSD) during the lane change maneuver of the subject vehicle was selected as the lane change safety indicator, and was calculated using the proposed human-like lane-change decision model. The results showed that, compared with the driver in the front extreme moment trial, the driver in the rear extreme moment trial is more conservative during the lane change process. To meet the safety expectations of the subject and rear vehicle drivers, the primary and secondary safe thresholds were determined to be 0.85 m/s2 and 1.76 m/s2, respectively. The decision model can help make AVs safer and more polite during lane changes, as it not only improves acceptance of the intelligent driving system, but also further ensures the rear vehicle’s driver’s safety.


Sign in / Sign up

Export Citation Format

Share Document