Differences in Medial and Lateral Posterior Tibial Slope: An Osteological Review of 1090 Tibiae Comparing Age, Sex, and Race

2016 ◽  
Vol 45 (1) ◽  
pp. 106-113 ◽  
Author(s):  
Douglas S. Weinberg ◽  
Drew F.K. Williamson ◽  
Jeremy J. Gebhart ◽  
Derrick M. Knapik ◽  
James E. Voos

Background: Injuries to the anterior cruciate ligament (ACL) are common, and a number of knee morphological variables have been identified as risk factors for an ACL injury, including the posterior tibial slope (TS). However, limited data exist regarding innate population differences in the TS. Purpose: To (1) establish normative values for the medial and lateral posterior TS; (2) determine what differences exist between ages, sexes, and races; and (3) determine how internal or external tibial rotation (as occurs during sagittal knee motion) influences the stereotactic perception of the TS. Study Design: Cross-sectional study; Level of evidence, 3. Methods: A total of 545 cadaveric specimens (1090 tibiae) were obtained from the Hamann-Todd osteological collection. Specimens were leveled in the coronal, sagittal, and axial planes using a digital laser. Virtual representations of each bone were created with a 3-dimensional digitizer apparatus. The TS of the medial and lateral tibial plateaus were measured using techniques adapted from previous radiographic protocols. Medial and lateral TS were then again measured on 200 tibiae that were internally and externally rotated by 10° (axially). Results: The mean (±SD) medial TS was 6.9° ± 3.7° posterior, which was greater than the mean lateral TS of 4.7° ± 3.6° posterior ( P < .001). Neither the medial nor lateral TS changed with age. Women had a greater mean TS compared with men on both the medial (7.5° ± 3.8° vs 6.8° ± 3.7°, respectively; P = .03) and lateral (5.2° ± 3.5° vs 4.6° ± 3.5°, respectively; P = .04) sides. Black specimens had a greater mean medial TS (8.7° ± 3.6° vs 5.8° ± 3.3°, respectively; P < .001) and lateral TS (5.9° ± 3.3° vs 3.8° ± 3.5°, respectively; P < .001) compared with white specimens. Axial rotation was shown to increase the perception of the medial and lateral TS ( P < .001). Conclusion: The medial TS was shown to be greater than the lateral TS. Important sex- and race-based differences exist in the TS. This study also highlights the role of axial rotation in measuring the TS.

2021 ◽  
pp. 036354652199709
Author(s):  
R. Kyle Martin ◽  
Guri R. Ekås ◽  
JūratėŠaltytė Benth ◽  
Nicholas Kennedy ◽  
Gilbert Moatshe ◽  
...  

Background: Increased lateral posterior tibial slope (LPTS) is associated with increased rates of anterior cruciate ligament (ACL) injury and failure of ACL reconstruction. It is unknown if ACL deficiency influences the developing proximal tibial physis and slope in skeletally immature patients through anterior tibial subluxation and abnormal force transmission. Purpose: To assess the natural history of LPTS in skeletally immature patients with an ACL-injured knee. Study Design: Case series; Level of evidence, 4. Methods: A total of 38 participants from a previous study on nonoperative management of ACL injury in skeletally immature patients were included. During the initial study, bilateral knee magnetic resonance imaging (MRI) was performed within 1 year of enrollment and again at final follow-up. All patients were younger than 13 years at the time of enrollment, and final follow-up occurred a mean 10 years after the injury. MRI scans were retrospectively reviewed by 2 reviewers to determine bilateral LPTS for each patient and each time point. Linear mixed models were used to assess LPTS differences between knees, change over time, and association with operational status. Subgroup analyses were performed for patients who remained nonoperated throughout the study. Results: A total of 22 patients had ACL reconstruction before final follow-up and 16 remained nonoperated. In the entire study population, the mean LPTS was higher in the injured knee than in the contralateral knee at final follow-up by 2.0° ( P < .001; 95% CI, 1.3°–2.6°). The mean LPTS increased significantly in the injured knee by 0.9° ( P = .042; 95% CI, 0.03°–1.7°), while the mean LPTS decreased in the contralateral knee by 0.4° ( P = .363; 95% CI, –0.8° to 0.4°). A significant difference in LPTS was also observed in the nonoperated subgroup. No significant association was observed between LPTS and operational status. Conclusion: Lateral posterior tibial slope increased more in the ACL-injured knee than in the contralateral uninjured knee in a group of skeletally immature patients. Lateral posterior tibial slope at baseline was not associated with the need for surgical reconstruction over the study period.


2018 ◽  
Vol 69 (11) ◽  
pp. 3295-3298
Author(s):  
Iulian Marcu ◽  
Ana Maria Oproiu ◽  
Nicolae Mihailide

The purpose of the current study was to evaluate the correlation between the tibial slope and medial meniscus injury in anterior cruciate ligament deficient knees. A total of 223 patients with primary ACL injury admitted to Foisor Orthopedic Hospital between 2015-2016 were included in this study. The posterior tibial slope was evaluated on a lateral x-ray view of the knee and was defined as the angle between the line joining the tibial plateau and the line perpendicular to the longitudinal axis (the proximal tibial anatomical axis). Patients were divided into two groups depending on the posterior tibial slope ([9.9 and �10), and a Chi square test was used to evaluate if there is any correlation between this and internal meniscus injuries, and Fisher�s exact test was used to verify this. Overall medial meniscus lesions were found in 43.5% of the patients. The mean value of the posterior tibial slope was 11.19+/-2,685. After grouping patients in low and high group ([9.9 and �10), there were 66.8% in the high tibial slope group and 33.2% in the low group. In the high PTS group there were 93 patients with medial meniscus lesion (62.4%), and 56 (37.6%) without medial meniscus lesion. The mean posterior tibial slope was higher in the medial meniscus tear group (11.78 degrees), than mean PTS in the group without medial meniscus lesion (10.42 degrees). There was a strong correlation between high tibial slope and medial meniscus lesions (p=0.015). The main finding of the current study is that there is a statistically significant correlation between posterior tibial slope higher than 10 degrees and internal meniscus tears.


2013 ◽  
Vol 28 (3) ◽  
pp. 285-290 ◽  
Author(s):  
Manfred Nelitz ◽  
Andreas M. Seitz ◽  
Jasmin Bauer ◽  
Heiko Reichel ◽  
Anita Ignatius ◽  
...  

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Ning Fan ◽  
Yong-chen Zheng ◽  
Lei Zang ◽  
Cheng-gang Yang ◽  
Shuo Yuan ◽  
...  

Abstract Background Several studies on the relationship between morphological parameters and traumatic diseases of the knee have already been conducted. However, few studies focused on the association between knee morphology and posterior cruciate ligament (PCL) avulsion fracture in adults. The objective of this study was to evaluate the impact of knee morphology on PCL avulsion fracture. Methods 76 patients (comprised 40 men and 36 women) with PCL avulsion fracture and 76 age- and sex-matched controls without PCL avulsion fracture were studied from 2012 to 2020. MRI measurements of the knee were acquired in the sagittal, coronal, and axial planes. The assessed measurements including intercondylar notch width index, coronal tibial slope, and medial/lateral posterior tibial slopes were compared between men and women, and between case and control groups respectively using independent sample t-tests. In addition, binary logistic regression analyses were used to identify independent risk factors of PCL avulsion fracture. Results Except notch width index (coronal) (p = 0.003) in the case groups, there was no statistical difference in the assessed measurements including notch width index (axial), coronal tibial slope, medial posterior tibial slope, and lateral posterior tibial slope between men and women in the case and control groups (p > 0.05). When female patients were analyzed, the notch width index (coronal) was significantly smaller (p = 0.0004), the medial posterior tibial slope (p = 0.018) and the lateral posterior tibial slope (p = 0.033) were significantly higher in the case group. The binary logistic regression analysis showed that the notch width index (coronal) (B = -0.347, OR = 0.707, p = 0.003) was found to be an independent factor of PCL avulsion fracture. However, none of the assessed measurements was found to have a statistical difference between the case and control groups in men (p > 0.05). Conclusions Notch width index (coronal), medial posterior tibial slope, and lateral posterior tibial slope were found to affect PCL avulsion fracture in women, but no such measurements affected the PCL avulsion fracture in men. Furthermore, a smaller notch width index (coronal) in women was found to be a risk factor in PCL avulsion fracture.


Author(s):  
O-Sung Lee ◽  
Jangyun Lee ◽  
Myung Chul Lee ◽  
Hyuk-Soo Han

AbstractThe posterior tibial slope (PTS) is usually adjusted by less than 5 degrees, without considering its individual difference, during posterior cruciate-substituting (PS) total knee arthroplasty (TKA). The effect of these individual changes of PTS would be important because clinical results depending on postoperative PTS were reported conflictingly. We investigated the effect of the change in PTS on the postoperative range of motion (ROM) and clinical scores after PS TKA. We retrospectively reviewed 164 knees from 107 patients who underwent PS TKA with a 2-year follow-up. We analyzed the preoperative and postoperative PTS, ROM, visual analog scale pain scale, Western Ontario and McMaster University Index (WOMAC), Hospital for Special Surgery Knee Score, Knee Society Score, and Forgotten Joint Score (FJS). The association of the absolute change in PTS with ROM and clinical scores was analyzed using correlation analysis and multiple regression analysis. As a result, the mean PTS and mean ROM changed from 9.6 ±  3.4 and 120.1 ±  15.4 degrees preoperatively to 2.0 ±  1.3 and 128.4 ±  9.3 degrees postoperatively, and the mean PTS change was 7.6 ±  3.5 degrees. The PTS change had no statistically significant association with the postoperative ROM and clinical scoring systems, although it did have a weak positive correlation with WOMAC function, No 10 (difficulty in rising from sitting) (correlation coefficient = 0.342, p = 0.041), and moderate positive correlation with the FJS, No. 6 (awareness when climbing stairs) (correlation coefficient = 0.470, p = 0.001). The authors concluded that the amount of change in PTS did not affect the postoperative ROM and clinical scores, although proximal tibial resection with a constant target of PTS resulted in individually different changes in the PTS after PS TKA,


Author(s):  
Alexander J. Nedopil ◽  
Peter J. Thadani ◽  
Thomas H. McCoy ◽  
Stephen M. Howell ◽  
Maury L. Hull

AbstractMost medial stabilized (MS) total knee arthroplasty (TKA) implants recommend excision of the posterior cruciate ligament (PCL), which eliminates the ligament's tension effect on the tibia that drives tibial rotation and compromises passive internal tibial rotation in flexion. Whether increasing the insert thickness and reducing the posterior tibial slope corrects the loss of rotation without extension loss and undesirable anterior lift-off of the insert is unknown. In 10 fresh-frozen cadaveric knees, an MS design with a medial ball-in-socket (i.e., spherical joint) and lateral flat insert was implanted with unrestricted calipered kinematic alignment (KA) and PCL retention. Trial inserts with goniometric markings measured the internal–external orientation relative to the femoral component's medial condyle at maximum extension and 90 degrees of flexion. After PCL excision, these measurements were repeated with the same insert, a 1 mm thicker insert, and a 2- and 4-mm shim under the posterior tibial baseplate to reduce the tibial slope. Internal tibial rotation from maximum extension and 90 degrees of flexion was 15 degrees with PCL retention and 7 degrees with PCL excision (p < 0.000). With a 1 mm thicker insert, internal rotation was 8 degrees (p < 0.000), and four TKAs lost extension. With a 2 mm shim, internal rotation was 9 degrees (p = 0.001) and two TKAs lost extension. With a 4 mm shim, internal rotation was 10 degrees (p = 0.002) and five TKAs lost extension and three had anterior lift-off. The methods of inserting a 1 mm thicker insert and reducing the posterior slope did not correct the loss of internal tibial rotation after PCL excision and caused extension loss and anterior lift-off in several knees. PCL retention should be considered when using unrestricted calipered KA and implanting a medial ball-in-socket and lateral flat insert TKA design, so the progression of internal tibial rotation and coupled reduction in Q-angle throughout flexion matches the native knee, optimizing the retinacular ligaments' tension and patellofemoral tracking.


2018 ◽  
Vol 6 (4_suppl2) ◽  
pp. 2325967118S0003
Author(s):  
Elmar Herbst ◽  
Andreas Imhoff ◽  
James Irrgang ◽  
William Anderst ◽  
Freddie Fu

The objective of this study was to investigate the effect of lateral and medial posterior tibial slope (PTS) and meniscal slope (PMS) on in-vivo anterior tibial translation (ATT) and internal tibial rotation (IR) during downhill running on the healthy contralateral knee twenty-four months after ACL reconstruction. Forty-two individuals (twenty-six males; mean age 21.2 ± 6.9 years) who underwent unilateral ACL reconstruction were included in this study. Morphologic parameters were measured on 3 T magnetic resonance images (MRI) using the 3D DESS sequence on the ACL reconstructed and healthy contralateral knee. Lateral and medial PTS and PMS were measured according to the method described by Hudek et al. Briefly, the tibial shaft axis was determined by connecting the centroids of two circles fitting the tibial shaft on the central sagittal MRI slice. The PTS and PMS were determined by the angle between the tibial shaft axis and the line connecting the two most proximal anterior and posterior subchondral bone and meniscal points in the center of each joint compartment. Three-dimensional in-vivo kinematics data were acquired using dynamic stereo x-ray during downhill running (3.0 m/s, 10° slope) at 150 Hz twenty-four months after unilateral ACL reconstruction. A multiple regression analysis was performed (p < .05). The lateral and medial PTS and PMS as well as the differences between the medial and lateral compartment slopes were not significantly related to ATT in the healthy contralateral knees twenty-four months after ACL reconstruction (p > .05). The lateral and medial PTS and PMS were not significantly related to peak internal tibial rotation (p > .05). However, the difference between the medial and lateral PTS as well as PMS was associated with greater internal tibial rotation (PTS: b=1.55, p < .001; PMS: b = .71, p = .02). The most important finding of the present study is that the difference between the medial and lateral posterior tibial and meniscal slope are related to in-vivo internal tibial rotation during downhill running. ATT was not significantly influenced by the tibial bony and meniscal morphology. Taking into account the results of the present study, the difference between the medial and the lateral PTS and PMS may contribute to IR when an ACL injury occurs. However, the analyzed movement was a straight-ahead run without any cutting or pivoting maneuvers commonly related to ACL tears. In such motion patterns, the correlations may be even stronger compared to the results of this study.


2019 ◽  
Vol 47 (2) ◽  
pp. 312-317 ◽  
Author(s):  
Andrew S. Bernhardson ◽  
Nicholas N. DePhillipo ◽  
Blake T. Daney ◽  
Mitchell I. Kennedy ◽  
Zachary S. Aman ◽  
...  

Background: Recent biomechanical studies have identified sagittal plane posterior tibial slope as a potential risk factor for posterior cruciate ligament (PCL) injury because of its effects on the kinematics of the native and surgically treated knee. However, the literature lacks clinical correlation between primary PCL injuries and decreased posterior tibial slope. Purpose/Hypothesis: The purpose of this study was to retrospectively compare the amount of posterior tibial slope between patients with PCL injuries and age/sex-matched controls with intact PCLs. It was hypothesized that patients with PCL injuries would have a significantly decreased amount of posterior tibial slope when compared with patients without PCL injuries. Study Design: Case-control study; Level of evidence, 3. Methods: Patients who underwent primary PCL reconstruction without anterior cruciate ligament injury between 2010 and 2017 by a single surgeon were retrospectively analyzed. Measurements of posterior tibial slope were performed with lateral radiographs of PCL-injured knees and matched controls without clinical or magnetic resonance imaging evidence of ligamentous injury. Mean values of posterior tibial slope were compared between the groups. Inter- and intrarater agreement was assessed for the tibial slope measurement technique via a 2-way random effects model to calculate the intraclass correlation coefficient (ICC). Results: In sum, 104 patients with PCL tears met the inclusion criteria, and 104 controls were matched according to age and sex. There were no significant differences in age ( P = .166), sex ( P = .345), or body mass index ( P = .424) between the PCL-injured and control groups. Of the PCL tear cohort, 91 patients (87.5%) sustained a contact mechanism of injury, while 13 (12.5%) reported a noncontact mechanism of injury. The mean ± SD posterior tibial slopes were 5.7°± 2.1° (95% CI, 5.3°-6.1°) and 8.6°± 2.2° (95% CI, 8.1°-9.0°) for the PCL-injured and matched control groups, respectively ( P < .0001). Subgroup analysis of the PCL-injured knees according to mechanism of injury demonstrated significant differences in posterior tibial slope between noncontact (4.6°± 1.8°) and contact (6.2°± 2.2°) injuries for all patients with PCL tears ( P = .013) and among patients with isolated PCL tears ( P = .003). The tibial slope measurement technique was highly reliable, with an ICC of 0.852 for interrater reliability and an ICC of 0.872 for intrarater reliability. Conclusion: A decreased posterior tibial slope was associated with patients with PCL tears as compared with age- and sex-matched controls with intact PCLs. Decreased tibial slope appears to be a risk factor for primary PCL injury. However, further clinical research is needed to assess if decreased posterior tibial slope affects posterior knee stability and outcomes after PCL reconstruction.


Sign in / Sign up

Export Citation Format

Share Document