internal tibial rotation
Recently Published Documents


TOTAL DOCUMENTS

26
(FIVE YEARS 8)

H-INDEX

10
(FIVE YEARS 1)

Author(s):  
Alexander J. Nedopil ◽  
Stephen M. Howell ◽  
Maury L. Hull

Abstract Purpose Excision of the posterior cruciate ligament (PCL) is recommended when implanting a medial pivot (MP) total knee arthroplasty (TKA) to reduce the risk of limiting flexion by over-tensioning the flexion space. The present study determined whether PCL retention (1) limits internal tibial rotation and (2) causes anterior lift-off of the insert in 90° flexion after implantation of an MP design with unrestricted caliper verified kinematic alignment (KA). Methods Four surgeons implanted an MP TKA design with medial ball-in-socket and lateral flat tibial insert in ten fresh-frozen cadaveric knees. Before and after PCL excision, trial inserts with medial goniometric markings measured the angular I–E tibial orientation relative to the trial femoral component's medial condyle in extension and at 90° flexion, and the surgeon recorded the occurrence of anterior lift-off of the insert at 90° flexion. Results PCL retention resulted in greater internal tibial rotation than PCL excision, with mean values of 15° vs 7° degrees from maximum extension to 90° flexion, respectively (p < 0.0007). At 90° flexion, no TKAs with PCL retention and one TKA with PCL excision had anterior lift-off of the insert (N.S.). Conclusions This preliminary study of ten cadaveric knees showed that PCL retention restored more passive internal tibial rotation than PCL excision with a negligible risk of anterior lift-off. However, in vivo analysis from multiple authors with a larger sample size is required to recommend PCL retention with an MP TKA design implanted with unrestricted caliper verified KA.


Author(s):  
Alexander J. Nedopil ◽  
Peter J. Thadani ◽  
Thomas H. McCoy ◽  
Stephen M. Howell ◽  
Maury L. Hull

AbstractMost medial stabilized (MS) total knee arthroplasty (TKA) implants recommend excision of the posterior cruciate ligament (PCL), which eliminates the ligament's tension effect on the tibia that drives tibial rotation and compromises passive internal tibial rotation in flexion. Whether increasing the insert thickness and reducing the posterior tibial slope corrects the loss of rotation without extension loss and undesirable anterior lift-off of the insert is unknown. In 10 fresh-frozen cadaveric knees, an MS design with a medial ball-in-socket (i.e., spherical joint) and lateral flat insert was implanted with unrestricted calipered kinematic alignment (KA) and PCL retention. Trial inserts with goniometric markings measured the internal–external orientation relative to the femoral component's medial condyle at maximum extension and 90 degrees of flexion. After PCL excision, these measurements were repeated with the same insert, a 1 mm thicker insert, and a 2- and 4-mm shim under the posterior tibial baseplate to reduce the tibial slope. Internal tibial rotation from maximum extension and 90 degrees of flexion was 15 degrees with PCL retention and 7 degrees with PCL excision (p < 0.000). With a 1 mm thicker insert, internal rotation was 8 degrees (p < 0.000), and four TKAs lost extension. With a 2 mm shim, internal rotation was 9 degrees (p = 0.001) and two TKAs lost extension. With a 4 mm shim, internal rotation was 10 degrees (p = 0.002) and five TKAs lost extension and three had anterior lift-off. The methods of inserting a 1 mm thicker insert and reducing the posterior slope did not correct the loss of internal tibial rotation after PCL excision and caused extension loss and anterior lift-off in several knees. PCL retention should be considered when using unrestricted calipered KA and implanting a medial ball-in-socket and lateral flat insert TKA design, so the progression of internal tibial rotation and coupled reduction in Q-angle throughout flexion matches the native knee, optimizing the retinacular ligaments' tension and patellofemoral tracking.


Author(s):  
Alexander J. Nedopil ◽  
Adithya Shekhar ◽  
Stephen M. Howell ◽  
Maury L. Hull

Abstract Introduction In total knee arthroplasty (TKA), the level of conformity, a medial stabilized (MS) implant, needs to restore native (i.e., healthy) knee kinematics without over-tensioning the flexion space when the surgeon chooses to retain the posterior cruciate ligament (PCL) is unknown. Whether an insert with a medial ball-in-socket conformity and lateral flat surface like the native knee or a less than spherical medial conformity restores higher and closer to native internal tibial rotation without anterior lift-off, an over-tension indicator, when implanted with calipered kinematic alignment (KA), is unknown. Methods and materials Two surgeons treated 21 patients with calipered KA and a PCL retaining MS implant. Validated verification checks that restore native tibial compartment forces in passive flexion without release of healthy ligaments were used to select the optimal insert thickness. A goniometer etched onto trial inserts with the ball-in-socket and the less than spherical medial conformity measured the tibial rotation relative to the femoral component at extension and 90° and 120° flexion. The surgeon recorded the incidence of anterior lift-off of the insert. Results The insert with the medial ball-in-socket and lateral flat surface restored more internal tibial rotation than the one with less than spherical medial conformity, with mean values of 19° vs. 17° from extension to 90° flexion (p < 0.01), and 23° vs. 20°–120° flexion (p < 0.002), respectively. There was no anterior lift-off of the insert at 90° and 120° flexion. Conclusion An MS insert with a medial ball-in-socket and lateral flat surface that matches the native knee’s spherical conformity restores native tibial internal rotation when implanted with calipered KA and PCL retention without over-tensioning the flexion space.


Author(s):  
Min-Joo Ko ◽  
Jae-Seop Oh ◽  
Duk-Hyun An ◽  
Won-Gyu Yoo ◽  
Kyung-Hee Noh ◽  
...  

BACKGROUND: The medial hamstring (MH) and lateral hamstring (LH) can be selectively trained through tibial internal and external rotation during prone knee flexion. However, no study has identified how a combined tibial rotation and lumbo-pelvic stability strategy influences MH and LH muscle activities. OBJECTIVE: To investigate the combined effects of tibial rotation and the abdominal drawing-in maneuver (ADIM) on MH and LH muscle activities as well as pelvic rotation during prone knee flexion. METHODS: Fifteen female volunteers performed prone knee flexion with tibial internal and external rotation, with and without the ADIM. Under each condition, MH and LH muscle activities were measured by surface electromyography (EMG), and the pelvic rotation angle by a smartphone inclinometer application. RESULTS: The results showed increased MH (without the ADIM: p< 0.001, effect size (d) = 2.05; with the ADIM: p< 0.001, d= 1.71) and LH (without the ADIM: p< 0.001, d= 1.64; with the ADIM: p= 0.001, d= 1.58) muscle activities under internal and external tibial rotation, respectively. However, addition of the ADIM led to increased MH (internal tibial rotation: p= 0.001, d= 0.67; external tibial rotation: p= 0.019, d= 0.45) and LH (internal tibial rotation: p= 0.003, d= 0.79; external tibial rotation: p< 0.001, d= 1.05) muscle activities combined with reduced pelvic rotation (internal tibial rotation: p< 0.001, d= 3.45; external tibial rotation: p< 0.001, d= 3.01) during prone knee flexion. CONCLUSIONS: These findings suggest that the ADIM could be useful for reducing compensatory pelvic rotation and enhancing selective muscle activation in the MH and LH, according to the direction of tibial rotation, during prone knee flexion.


2021 ◽  
Vol 11 (6) ◽  
pp. 516
Author(s):  
Alexander J. Nedopil ◽  
Connor Delman ◽  
Stephen M. Howell ◽  
Maury L. Hull

Introduction: The calipered kinematically-aligned (KA) total knee arthroplasty (TKA) strives to restore the patient’s individual pre-arthritic (i.e., native) posterior tibial slope when retaining the posterior cruciate ligament (PCL). Deviations from the patient’s individual pre-arthritic posterior slope tighten and slacken the PCL in flexion that drives tibial rotation, and such a change might compromise passive internal tibial rotation and coupled patellofemoral kinematics. Methods: Twenty-one patients were treated with a calipered KA TKA and a PCL retaining implant with a medial ball-in-socket and a lateral flat articular insert conformity that mimics the native (i.e., healthy) knee. The slope of the tibial resection was set parallel to the medial joint line by adjusting the plane of an angel wing inserted in the tibial guide. Three trial inserts that matched and deviated 2°> and 2°< from the patient’s pre-arthritic slope were 3D printed with goniometric markings. The goniometer measured the orientation of the tibia (i.e., trial insert) relative to the femoral component. Results: There was no difference between the radiographic preoperative and postoperative tibial slope (0.7 ± 3.2°, NS). From extension to 90° flexion, the mean passive internal tibial rotation with the pre-arthritic slope insert of 19° was greater than the 15° for the 2°> slope (p < 0.000), and 15° for the 2°< slope (p < 0.000). Discussion: When performing a calipered KA TKA with PCL retention, the correct target for setting the tibial component is the patient’s individual pre-arthritic slope within a tolerance of ±2°, as this target resulted in a 15–19° range of internal tibial rotation that is comparable to the 15–18° range reported for the native knee from extension to 90° flexion.


2020 ◽  
pp. 036354652097614
Author(s):  
Florian B. Imhoff ◽  
Brendan Comer ◽  
Elifho Obopilwe ◽  
Knut Beitzel ◽  
Robert A. Arciero ◽  
...  

Background: Correction of high posterior tibial slope is an important treatment option for revision of anterior cruciate ligament (ACL) failure as seen in clinical and biomechanical studies. In cases with moderate to severe medial compartment arthritis, an additional varus correction osteotomy may be added to improve alignment. Purpose: To investigate the influence of coronal and sagittal correction high tibial osteotomy in ACL-deficient and ACL-reconstructed knees on knee kinematics and ACL graft load. Study Design: Controlled laboratory study. Methods: Ten cadaveric knees were selected according to previous computed tomography measurements with increased native slope and slight varus tibial alignment (mean ± SD): slope, 9.9°± 1.4°; medial proximal tibia angle, 86.5°± 2.1°; age, 47.7 ± 5.8 years. A 10° anterior closing-wedge osteotomy, as well as an additional 5° of simulated varus correction osteotomy, were created and fixed using an external fixator. Four alignment conditions—native, varus correction, slope correction, and combined varus and slope correction—were randomly tested in 2 states: ACL-deficient and ACL-reconstructed. Compressive axial loads were applied to the tibia while mounted on a free-moving X-Y table and free-rotating tibia in a knee testing fixture. Three-dimensional motion tracking captured anterior tibial translation (ATT) and internal tibial rotation. Change of tensile forces on the reconstructed ACL graft were recorded. Results: In the ACL-deficient knee, an isolated varus correction led to a significant increase of ATT by 4.3 ± 4.0 mm ( P = .04). Isolated slope reduction resulted in the greatest decrease of ATT by 6.2 ± 4.3 mm ( P < .001). In the ACL-reconstructed knee, ATT showed comparable changes, while combined varus and slope correction led to lower ATT by 3.7 ± 2.6 mm ( P = .01) than ATT in the native alignment. Internal tibial rotation was not significantly altered by varus correction but significantly increased after isolated slope correction by 4.0°± 4.1° ( P < .01). Each isolated or combined osteotomy showed decreased forces on the graft as compared with the native state. The combined varus and slope osteotomy led to a mean decrease of ACL graft force by 33% at 200 N and by 58% at 400 N as compared with the native condition ( P < .001). Conclusion: A combined varus and slope correction led to a relevant decrease of ATT in the ACL-deficient and ACL-reconstructed cadaveric knee. ACL graft forces were significantly decreased after combined varus and slope correction. Thus, our biomechanical findings support the treatment goal of a perpendicular-aligned tibial plateau for ACL insufficiencies, especially in cases of revision surgery. Clinical Relevance: This study shows the beneficial knee kinematics and reduced forces on the ACL graft after combined varus and slope correction.


2020 ◽  
Vol 32 (1) ◽  
Author(s):  
Jin Kyu Lee ◽  
Young Jin Seo ◽  
Soo-Young Jeong ◽  
Jae-Hyuk Yang

Abstract Background It has been suggested that the anterolateral ligament (ALL) is an important anterolateral stabilizer of the knee joint which functions to prevent anterolateral subluxation and anterior subluxation at certain flexion angles in the knee. Purpose To analyze and systematically interpret the biomechanical function of the ALL. Methods An online search was conducted for human cadaveric biomechanical studies that tested function of the ALL in resisting anterolateral subluxation and anterior subluxation of the knee. Two reviewers independently searched Medline, Embase, and the Cochrane Database of Systematic Reviews for studies up to 25 September 2018. Biomechanical studies not reporting the magnitude of anterior tibial translation or tibial internal rotation in relation to the function of the ALL were excluded. Results Twelve biomechanical studies using human cadavers evaluating parameters including anterior tibial translation and/or internal tibial rotation in anterior cruciate ligament (ACL)-sectioned and ALL-sectioned knees were included in the review. Five studies reported a minor increase or no significant increase in anterior tibial translation and internal tibial rotation with further sectioning of the ALL in ACL-deficient knees. Five studies reported a significant increase in knee laxity in tibial internal rotation or pivot shift with addition of sectioning the ALL in ACL-deficient knees. Two studies reported a significant increase in both anterior tibial translation and internal tibial rotation during application of the anterior-drawer and pivot-shift tests after ALL sectioning. Conclusion There was inconsistency in the biomechanical characteristics of the ALL of the knee in resisting anterolateral and anterior subluxation of the tibia.


2019 ◽  
Vol 47 (8) ◽  
pp. 1844-1853 ◽  
Author(s):  
Nathaniel A. Bates ◽  
Nathan D. Schilaty ◽  
Christopher V. Nagelli ◽  
Aaron J. Krych ◽  
Timothy E. Hewett

Background:Anterior cruciate ligament (ACL) tears and concomitant medial collateral ligament (MCL) injuries are known to occur during dynamic athletic tasks that place combinatorial frontal and transverse plane loads on the knee. A mechanical impact simulator that produces clinical presentation of ACL injury allows for the quantification of individual loading contributors leading to ACL failure.Purpose/Hypothesis:The objective was to delineate the relationship between knee abduction moment, anterior tibial shear, and internal tibial rotation applied at the knee and ACL strain during physiologically defined simulations of impact at a knee flexion angle representative of initial contact landing from a jump. The hypothesis tested was that before ACL failure, abduction moment would induce greater change in ACL strain during landing than either anterior shear or internal rotation.Study Design:Controlled laboratory study.Methods:Nineteen cadaveric specimens were subjected to simulated landings in the mechanical impact simulator. During simulations, external knee abduction moment, internal tibial rotation moment, and anterior tibial shear loads were derived from a previously analyzed in vivo cohort and applied to the knee in varying magnitudes with respect to injury risk classification. Implanted strain gauges were used to track knee ligament displacement throughout simulation. Kruskal-Wallis tests were used to assess strain differences among loading factors, with Wilcoxon each pair post hoc tests used to assess differences of magnitude within each loading.Results:Each loading factor significantly increased ACL strain ( P < .005). Within factors, the high-risk magnitude of each factor significantly increased ACL strain relative to the baseline condition ( P≤ .002). However, relative to knee abduction moment specifically, ACL strain increased with each increased risk magnitude ( P≤ .015).Conclusion:Increased risk levels of each load factor contributed to increased levels of ACL strain during a simulated jump landing. The behavior of increased strain between levels of increased risk loading was most prevalent for changes in knee abduction moment. This behavior was observed in the ACL and MCL.Clinical Relevance:Knee abduction moment may be the predominant precursor to ACL injury and concomitant MCL injury. As knee abduction occurs within the frontal plane, primary preventative focus should incorporate reduction of frontal plane knee loading in landing and cutting tasks, but secondary reduction of transverse plane loading could further increase intervention efficacy. Constraint of motion in these planes should restrict peak ACL strain magnitudes during athletic performance.


2018 ◽  
Vol 46 (9) ◽  
pp. 2122-2127 ◽  
Author(s):  
Peter Z. Du ◽  
Keith L. Markolf ◽  
Daniel V. Boguszewski ◽  
Kent T. Yamaguchi ◽  
Christopher J. Lama ◽  
...  

Background: Osteochondral allograft (OCA) transplantation is used to treat large focal femoral condylar articular cartilage defects. A proud plug could affect graft survival by altering contact forces (CFs) and knee kinematics. Hypothesis: A proud OCA plug will significantly increase CF and significantly alter knee kinematics throughout controlled knee flexion. Study Design: Controlled laboratory study. Methods: Human cadaver knees had miniature load cells, each with a 20-mm-diameter cylinder of native bone/cartilage attached at its exact anatomic position, installed in both femoral condyles at standardized locations representative of clinical defects. Spacers were inserted to create proud plug conditions of +0.5, +1.0, and +1.5 mm. CFs and knee kinematics were recorded as a robot flexed the knee continuously from 0° to 50° under 1000 N of tibiofemoral compression. Results: CFs were increased significantly (vs flush) for all proudness conditions between 0° and 45° of flexion (medial) and 0° to 50° of flexion (lateral). At 20°, the average increases in medial CF for +0.5-mm, +1-mm, and +1.5-mm proudness were +80 N (+36%), +155 N (+70%), and +193 N (+87%), respectively. Corresponding increases with proud lateral plugs were +44 N (+14%), +90 N (+29%), and +118 N (+38%). CF increases for medial plugs at 20° of flexion were significantly greater than those for lateral plugs at all proudness conditions. At 50°, a 1-mm proud lateral plug significantly decreased internal tibial rotation by 15.4° and decreased valgus rotation by 2.5°. Conclusion: A proud medial or lateral plug significantly increased CF between 0° and 45° of flexion. Our results suggest that a medial plug at 20° may be more sensitive to graft incongruity than a lateral plug. The changes in rotational kinematics with proud lateral plugs were attributed to earlier contact between the proud plug’s surface and the lateral meniscus, leading to rim impingement with decreased tibial rotation. Clinical Relevance: Increased CF and altered knee kinematics from a proud femoral plug could affect graft viability. Plug proudness of only 0.5 mm produced significant changes in CF and knee kinematics, and the clinically accepted 1-mm tolerance may need to be reexamined in view of our findings.


2018 ◽  
Vol 46 (7) ◽  
pp. 1559-1565 ◽  
Author(s):  
Kwadwo A. Owusu-Akyaw ◽  
Sophia Y. Kim ◽  
Charles E. Spritzer ◽  
Amber T. Collins ◽  
Zoë A. Englander ◽  
...  

Background: The incidence of anterior cruciate ligament (ACL) ruptures is 2 to 4 times higher in female athletes as compared with their male counterparts. As a result, a number of recent studies have addressed the hypothesis that female and male patients sustain ACL injuries via different mechanisms. The efficacy of prevention programs may be improved by a better understanding of whether there are differences in the injury mechanism between sexes. Hypothesis/Purpose: To compare knee positions at the time of a noncontact ACL injury between sexes. It was hypothesized that there would be no differences in the position of injury. Study Design: Controlled laboratory study. Methods: Clinical T2-weighted magnetic resonance imaging (MRI) scans from 30 participants (15 male and 15 female) with a noncontact ACL rupture were reviewed retrospectively. MRI scans were obtained within 1 month of injury. Participants had contusions associated with an ACL injury on both the medial and lateral articular surfaces of the femur and tibia. Three-dimensional models of the femur, tibia, and associated bone bruises were created via segmentation on MRI. The femur was positioned relative to the tibia to maximize bone bruise overlap, thereby predicting the bone positions near the time of the injury. Flexion, valgus, internal tibial rotation, and anterior tibial translation were measured in the predicted position of injury. Results: No statistically significant differences between male and female patients were detected in the position of injury with regard to knee flexion ( P = .66), valgus ( P = .87), internal tibial rotation ( P = .26), or anterior tibial translation ( P = .18). Conclusion: These findings suggest that a similar mechanism results in an ACL rupture in both male and female athletes with this pattern of bone bruising. Clinical Relevance: This study provides a novel comparison of male and female knee positions at the time of an ACL injury that may offer information to improve injury prevention strategies.


Sign in / Sign up

Export Citation Format

Share Document