Anterior Cruciate Ligament Reconstruction Affects Tibiofemoral Joint Congruency During Dynamic Functional Movement

2018 ◽  
Vol 46 (7) ◽  
pp. 1566-1574 ◽  
Author(s):  
Kanto Nagai ◽  
Tom Gale ◽  
James J. Irrgang ◽  
Scott Tashman ◽  
Freddie H. Fu ◽  
...  

Background: Anterior cruciate ligament reconstruction (ACLR) has been shown to alter kinematics, which may influence dynamic tibiofemoral joint congruency (a measure of how well the bone surfaces fit together). This may lead to abnormal loading of cartilage and joint degeneration. However, joint congruency after ACLR has never been investigated. Hypotheses: The ACLR knee will be more congruent than the contralateral uninjured knee, and dynamic congruency will increase over time after ACLR. Side-to-side differences (SSD) in dynamic congruency will be related to cartilage contact location/area and subchondral bone curvatures. Study Design: Descriptive laboratory study. Methods: The authors examined 43 patients who underwent unilateral ACLR. At 6 months and 24 months after ACLR, patients performed downhill running on a treadmill while synchronized biplane radiographs were acquired at 150 images per second. Dynamic tibiofemoral kinematic values were determined by use of a validated volumetric model-based tracking process that matched patient-specific bone models, obtained from computed tomography, to biplane radiographs. Patient-specific cartilage models, obtained from magnetic resonance imaging, were registered to tracked bone models and used to calculate dynamic cartilage contact regions. Principle curvatures of the subchondral bone surfaces under each cartilage contact area were calculated to determine joint congruency. Repeated-measures analysis of variance was used to test the differences. Multiple linear regression was used to identify associations between SSD in congruency index, cartilage contact area, contact location, and global curvatures of femoral or tibial subchondral bone. Results: Lateral compartment congruency in the ACLR knee was greater than in the contralateral knee ( P < .001 at 6 months and P = .010 at 24 months). From 6 to 24 months after surgery, dynamic congruency decreased in the medial compartment ( P = .002) and increased in the lateral compartment ( P = .007) in the ACLR knee. In the lateral compartment, SSD in joint congruency was related to contact location and femur global curvature, and in the medial compartment, SSD in joint congruency was related to contact area. Conclusion: ACLR appears to affect dynamic joint congruency. SSD in joint congruency was associated with changes in contact location, contact area, and femoral bony curvature. Clinical Relevance: Alterations in tibiofemoral contact location, contact area, and bone shape affect dynamic joint congruency, potentially contributing to long-term degeneration after ACLR.

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Yuxue Xie ◽  
Yibo Dan ◽  
Hongyue Tao ◽  
Chenglong Wang ◽  
Chengxiu Zhang ◽  
...  

Objectives. To introduce a new implementation of radiomics analysis for cartilage and subchondral bone of the knee and to compare the performance of the proposed models to classic T2 relaxation time in distinguishing knees predisposed to posttraumatic osteoarthritis (PTOA) after anterior cruciate ligament reconstruction (ACLR) and healthy controls. Methods. 114 patients following ACLR after at least 2 years and 43 healthy controls were reviewed and allocated to training ( n = 110 ) and testing ( n = 47 ) cohorts. Radiomics models are built for cartilage and subchondral bone regions of different compartments: lateral femur (LF), lateral tibia (LT), medial femur (MF), and medial tibia (MT) and combined models of four compartments on T2 mapping images. The model performance of discrimination between patients and controls was illustrated with the receiver operating characteristic curve and compared with a classic T2 value-based model. Results. The T2 value model of cartilage yielded moderate predictive performance in discerning patients and controls, with an AUC of 0.731 (95% confidence interval, 0.556–0.875) in the testing cohort, while the radiomics signature of cartilage and subchondral bone of different compartments demonstrated excellent performance, with AUCs of 0.864–0.979. Furthermore, the combined model reported an even better performance, with AUCs of 0.977 (95% confidence interval, 0.919–1.000) for the cartilage and 0.934 (95% confidence interval, 0.865–0.994) for the subchondral bone in the testing cohort. Conclusion. The radiomics features of the cartilage and subchondral bone may be able to provide powerful tools with more sensitive detection than T2 values in differentiating knees at risk for PTOA after ACLR from healthy knees.


Sign in / Sign up

Export Citation Format

Share Document