Normal fluid stresses are prevalent in rotary ventricular assist devices: A computational fluid dynamics analysis

2018 ◽  
Vol 41 (11) ◽  
pp. 738-751 ◽  
Author(s):  
Dominica PY Khoo ◽  
Andrew N Cookson ◽  
Harinderjit S Gill ◽  
Katharine H Fraser

Despite the evolution of ventricular assist devices, ventricular assist device patients still suffer from complications due to the damage to blood by fluid dynamic stress. Since rotary ventricular assist devices are assumed to exert mainly shear stress, studies of blood damage are based on shear flow experiments. However, measurements and simulations of cell and protein deformation show normal and shear stresses deform, and potentially damage, cells and proteins differently. The aim was to use computational fluid dynamics to assess the prevalence of normal stress, in comparison with shear stress, in rotary ventricular assist devices. Our calculations showed normal stresses do occur in rotary ventricular assist devices: the fluid volumes experiencing normal stress above 10 Pa were 0.011 mL (0.092%) and 0.027 mL (0.39%) for the HeartWare HVAD and HeartMate II (HMII), and normal stresses over 100 Pa were present. However, the shear stress volumes were up to two orders of magnitude larger than the normal stress volumes. Considering thresholds for red blood cell and von Willebrand factor deformation by normal and shear stresses, the fluid volumes causing deformation by normal stress were between 2.5 and 5 times the size of those causing deformation by shear stress. The exposure times to the individual normal stress deformation regions were around 1 ms. The results clearly show, for the first time, that while blood within rotary ventricular assist devices experiences more shear stress at much higher magnitudes as compared with normal stress, there is sufficient normal stress exposure present to cause deformation of, and potentially damage to, the blood components. This study is the first to quantify the fluid stress components in real blood contacting devices.

Author(s):  
Andres F. Osorio ◽  
Alain J. Kassab ◽  
Eduardo A. Divo ◽  
I. Ricardo Argueta-Morales ◽  
William M. DeCampli

Presently, mechanical support is the most promising alternative to cardiac transplantation. Ventricular Assist Devices (VADs) were originally used to provide mechanical circulatory support in patients waiting planned heart transplantation (“bridge-to-transplantation” therapy). The success of short-term bridge devices led to clinical trials evaluating the clinical suitability of long-term support (“destination” therapy) with left ventricular assist devices (LVADs). The first larger-scale, randomized trial that tested long-term support with a LVAD reported a 44% reduction in the risk of stroke or death in patients with a LVAD. In spite of the success of LVADs as bridge-to-transplantation and long-term support. Patients carrying these devices are still at risk of several adverse events. The most devastating complication is caused by embolization of thrombi formed within the LVAD or inside the heart into the brain. Prevention of thrombi formation is attempted through anticoagulation management and by improving LVADs design; however there is still significant occurrence of thromboembolic events in patients. Investigators have reported that the incidence of thromboembolic cerebral events ranges from 14% to 47% over a period of 6–12 months. An alternative method to reduce the incidence of cerebral embolization has been proposed by one of the co-authors, namely William DeCampli M.D., Ph.D. The hypothesis is that it is possible to minimize the number of thrombi flowing into the carotid arteries by an optimal placement of the LVAD outflow conduit, and/or the addition of aortic bypass connecting the ascending aorta (AO) and the innominate artery (IA), or left carotid artery (LCA). This paper presents the computational fluid dynamics (CFD) analysis of the aortic arch hemodynamics using a representative geometry of the human aortic arch and an alternative aortic bypass. The alternative aortic bypass is intended to reduce thrombi flow incidence into the carotid arteries in patients with LVAD implants with the aim to reduce thromboembolisms. In order to study the trajectory of the thrombi within the aortic arch, a Lagrangian particle-tracking model is coupled to the CFD model. Results are presented in the form of percentage of thrombi flowing to the carotid arteries as a function of LVAD conduit placement and aortic bypass implantation, revealing promising improvement.


2012 ◽  
Vol 134 (8) ◽  
Author(s):  
Katharine H. Fraser ◽  
Tao Zhang ◽  
M. Ertan Taskin ◽  
Bartley P. Griffith ◽  
Zhongjun J. Wu

Ventricular assist devices (VADs) have already helped many patients with heart failure but have the potential to assist more patients if current problems with blood damage (hemolysis, platelet activation, thrombosis and emboli, and destruction of the von Willebrand factor (vWf)) can be eliminated. A step towards this goal is better understanding of the relationships between shear stress, exposure time, and blood damage and, from there, the development of numerical models for the different types of blood damage to enable the design of improved VADs. In this study, computational fluid dynamics (CFD) was used to calculate the hemodynamics in three clinical VADs and two investigational VADs and the shear stress, residence time, and hemolysis were investigated. A new scalar transport model for hemolysis was developed. The results were compared with in vitro measurements of the pressure head in each VAD and the hemolysis index in two VADs. A comparative analysis of the blood damage related fluid dynamic parameters and hemolysis index was performed among the VADs. Compared to the centrifugal VADs, the axial VADs had: higher mean scalar shear stress (sss); a wider range of sss, with larger maxima and larger percentage volumes at both low and high sss; and longer residence times at very high sss. The hemolysis predictions were in agreement with the experiments and showed that the axial VADs had a higher hemolysis index. The increased hemolysis in axial VADs compared to centrifugal VADs is a direct result of their higher shear stresses and longer residence times. Since platelet activation and destruction of the vWf also require high shear stresses, the flow conditions inside axial VADs are likely to result in more of these types of blood damage compared with centrifugal VADs.


2020 ◽  
Vol 43 (10) ◽  
pp. 653-662 ◽  
Author(s):  
Jiafeng Zhang ◽  
Zengsheng Chen ◽  
Bartley P Griffith ◽  
Zhongjun J Wu

Left ventricular assist devices are routinely used to treat patients with advanced heart failure as a bridge to transplant or a destination therapy. However, non-physiological shear stress generated by left ventricular assist devices damages blood cells. The continued development of novel left ventricular assist devices is essential to improve the left ventricular assist device therapy for heart failure patients. The CH-VAD is a new maglev centrifugal left ventricular assist device. In this study, the CH-VAD pump was numerically analyzed and compared with the HVAD and HeartMate II pumps under two clinically relevant conditions (flow: 4.5 L/min, pressure head: normal ~80 and hypertension ~120 mmHg). The velocity and shear stress fields, washout, and hemolysis index of the three pumps were assessed with computational fluid dynamics analysis. Under the same condition, the CH-VAD hemolysis index was two times lower than the HVAD and HeartMate II pumps; the CH-VAD had the least percentage volume with shear stress larger than 100 Pa (i.e. normal condition: 0.4% vs HVAD 1.0%, and HeartMate II 2.9%). Under the normal condition, more than 98% was washed out of the three pumps within 0.4 s. The washout times were slightly shorter under the hypertension condition for the three pumps. No regions inside the CH-VAD or HVAD had extremely long residential time, while areas near the straightener of the HeartMate II pump had long residential time (>4 s) indicating elevated risks of thrombosis. The computational fluid dynamics results suggested that the CH-VAD pump has a better hemolytic biocompatibility than the HVAD and HeartMate II pumps under the normal and hypertension conditions.


2011 ◽  
Vol 33 (3) ◽  
pp. 263-280 ◽  
Author(s):  
Katharine H. Fraser ◽  
M. Ertan Taskin ◽  
Bartley P. Griffith ◽  
Zhongjun J. Wu

2019 ◽  
Vol 42 (12) ◽  
pp. 725-734 ◽  
Author(s):  
Christian Loosli ◽  
Stephan Rupp ◽  
Bente Thamsen ◽  
Mathias Rebholz ◽  
Gerald Kress ◽  
...  

Pulsatile positive displacement pumps as ventricular assist devices were gradually replaced by rotary devices due to their large volume and high adverse event rates. Nevertheless, pulsatile ventricular assist devices might be beneficial with regard to gastrointestinal bleeding and cardiac recovery. Therefore, aim of this study was to investigate the flow field in new pulsatile ventricular assist devices concepts with an increased pump frequency, which would allow lower stroke volumes to reduce the pump size. We developed a novel elliptically shaped pulsatile ventricular assist devices, which we compared to a design based on a circular shape. The pump size was adjusted to deliver similar flow rates at pump frequencies of 80, 160, and 240 bpm. Through a computational fluid dynamics study, we investigated flow patterns, residence times, and wall shear stresses for different frequencies and pump sizes. A pump size reduction by almost 50% is possible when using a threefold pump frequency. We show that flow patterns inside the circular pump are frequency dependent, while they remain similar for the elliptic pump. With slightly increased wall shear stresses for higher frequencies, maximum wall shear stresses on the pump housing are higher for the circular design (42.2 Pa vs 18.4 Pa). The calculated blood residence times within the pump decrease significantly with increasing pump rates. A smaller pump size leads to a slight increase of wall shear stresses and a significant improvement of residence times. Hence, high-frequency operation of pulsatile ventricular assist devices, especially in combination with an elliptical shape, might be a feasible mean to reduce the size, without any expectable disadvantages in terms of hemocompatibility.


2016 ◽  
Vol 140 ◽  
pp. 110-117 ◽  
Author(s):  
Lorenzo Valerio ◽  
Phat L. Tran ◽  
Jawaad Sheriff ◽  
William Brengle ◽  
Ram Ghosh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document