The design and manufacturing of fluidic oscillators for composite aircraft structures

Author(s):  
Ahmed Aly ◽  
Jonathan Colton

Active flow control devices have been proven to reduce drag and delay stall on commercial aircraft. This leads to lower fuel usage and thus reduced flight costs. However, there is a large uncertainty as to how to integrate active flow control devices into aircraft, specifically those with composite structures. In addition, the cost of manufacturing active flow control devices for large-scale production has not been previously studied. In this article, design concepts for the attachment of a fluidic oscillator to a composite aircraft structure are investigated. A systematic approach from the conceptual design to the final design is performed using different design tools. A cost analysis is performed to select the most cost-effective design configuration based on large volume fluidic oscillator production. Through design validation and cost estimation, the final design is shown to be feasible for large volume manufacturing.

2022 ◽  
Author(s):  
Sirko Bartholomay ◽  
Sascha Krumbein ◽  
Victoria Deichmann ◽  
Maik Gentsch ◽  
Sebastian Perez-Becker ◽  
...  

2022 ◽  
Author(s):  
Abderahmane Marouf ◽  
Dinh Hung Truong ◽  
Yannick Hoarau ◽  
Alain Gehri ◽  
Dominique Charbonnier ◽  
...  

Author(s):  
Mohd S. Aris ◽  
Ieuan Owen ◽  
Chris J. Sutcliffe

This paper is concerned with the convective heat transfer of heated surfaces through the use of active flow control devices. An investigation has been carried out into the use of two flow control design configurations manufactured from Shape Memory Alloys (SMAs) which are activated at specified temperatures. In this design, a high surface temperature would activate rectangular flaps to change shape and protrude at a 45° angle of attack. This protrusion would generate longitudinal vortices and at the same time allow air to flow into cooling channels underneath the flaps, cooling a heated surface downstream of the flow control device. One- and two-channel flow control configurations were explored in this work. The flow control device was made from pre-alloyed powders of SMA material in a rapid prototyping process known as Selective Laser Melting (SLM). It was tested for its heat transfer enhancement in an open test section wind tunnel supplied with low velocity air flow. Infrared thermography was used to evaluate the surface temperatures of the downstream heated surface. Promising results were obtained for the flow control design when the heated surface temperatures were varied from 20 °C to 85 °C. In the one-channel configuration, the flow control device in its activated shape increased heat transfer to a maximum of 50% compared to its deactivated shape. The activated flow control device in the two-channel configuration experienced a heat transfer enhancement of up to 90% compared to when it is deactivated.


2014 ◽  
Vol 6 (1) ◽  
pp. 1-20 ◽  
Author(s):  
Jean-Luc Aider ◽  
Pierric Joseph ◽  
Tony Ruiz ◽  
Philippe Gilotte ◽  
Yoann Eulalie ◽  
...  

2012 ◽  
Vol 134 (08) ◽  
pp. 55-55 ◽  
Author(s):  
G. Pechlivanoglou ◽  
C.N. Nayeri ◽  
C.O. Paschereit

This article discusses the performance optimization of wind turbine rotors with active flow control. An extensive multi-parameter investigation with a thorough matrix-grading system was performed to identify the most suitable solution for industrial quality, short/mid-term implementation on actual utility scale wind turbines. A very wide selection of aerodynamic flow control solutions was analyzed based on extensive multi-disciplinary literature review and through aerodynamic and aeroelastic simulations. It is suggested that the trailing edge devices have the most favorable performance in the field of system integration and mechanical design performance. Compliant structures like the flexible flap keep the number of moving parts to a minimum while maintaining high performance and manufacturing simplicity. The use of flexible and elastic materials based on polymers or rubber material improves the lightning strike resistance of these solutions and allows for low-cost large-scale production. The actuator principle, sensitivity, and reliability are decisive parameters, and pneumatic actuators seem to strike a good balance between performance, cost, and reliability.


Sign in / Sign up

Export Citation Format

Share Document