CFD simulations of active flow control devices applied on a cambered flap

2022 ◽  
Author(s):  
Abderahmane Marouf ◽  
Dinh Hung Truong ◽  
Yannick Hoarau ◽  
Alain Gehri ◽  
Dominique Charbonnier ◽  
...  
2022 ◽  
Author(s):  
Sirko Bartholomay ◽  
Sascha Krumbein ◽  
Victoria Deichmann ◽  
Maik Gentsch ◽  
Sebastian Perez-Becker ◽  
...  

Author(s):  
Ahmed Aly ◽  
Jonathan Colton

Active flow control devices have been proven to reduce drag and delay stall on commercial aircraft. This leads to lower fuel usage and thus reduced flight costs. However, there is a large uncertainty as to how to integrate active flow control devices into aircraft, specifically those with composite structures. In addition, the cost of manufacturing active flow control devices for large-scale production has not been previously studied. In this article, design concepts for the attachment of a fluidic oscillator to a composite aircraft structure are investigated. A systematic approach from the conceptual design to the final design is performed using different design tools. A cost analysis is performed to select the most cost-effective design configuration based on large volume fluidic oscillator production. Through design validation and cost estimation, the final design is shown to be feasible for large volume manufacturing.


Author(s):  
Mohd S. Aris ◽  
Ieuan Owen ◽  
Chris J. Sutcliffe

This paper is concerned with the convective heat transfer of heated surfaces through the use of active flow control devices. An investigation has been carried out into the use of two flow control design configurations manufactured from Shape Memory Alloys (SMAs) which are activated at specified temperatures. In this design, a high surface temperature would activate rectangular flaps to change shape and protrude at a 45° angle of attack. This protrusion would generate longitudinal vortices and at the same time allow air to flow into cooling channels underneath the flaps, cooling a heated surface downstream of the flow control device. One- and two-channel flow control configurations were explored in this work. The flow control device was made from pre-alloyed powders of SMA material in a rapid prototyping process known as Selective Laser Melting (SLM). It was tested for its heat transfer enhancement in an open test section wind tunnel supplied with low velocity air flow. Infrared thermography was used to evaluate the surface temperatures of the downstream heated surface. Promising results were obtained for the flow control design when the heated surface temperatures were varied from 20 °C to 85 °C. In the one-channel configuration, the flow control device in its activated shape increased heat transfer to a maximum of 50% compared to its deactivated shape. The activated flow control device in the two-channel configuration experienced a heat transfer enhancement of up to 90% compared to when it is deactivated.


2021 ◽  
Author(s):  
Abderahmane Marouf ◽  
Agathe Chouippe ◽  
Jan B. Vos ◽  
Dominique Charbonnier ◽  
Alain Gehri ◽  
...  

2021 ◽  
Author(s):  
Koldo Portal-Porras ◽  
Unai Fernandez-Gamiz ◽  
Ekaitz Zulueta ◽  
Alejandro Ballesteros-Coll ◽  
Asier Zulueta

Abstract Wind energy has become an important source of electricity generation, with the aim of achieving a cleaner and more sustainable energy model. However, wind turbine performance improvement is required to compete with conventional energy resources. To achieve this improvement, flow control devices are implemented on airfoils. Computational Fluid Dynamics (CFD) simulations are the most popular method for analyzing this kind of devices, but in recent years, with the growth of Artificial Intelligence, predicting flow characteristics using neural networks is becoming increasingly popular. In this work, 158 different CFD simulations of a DU91W(2)250 airfoil are conducted, with two different flow control devices, rotating microtabs and Gurney flaps, added on its Trailing Edge (TE). These flow control devices are implemented by using the cell-set meshing technique. These simulations are used to train and test a Convolutional Neural Network (CNN) for velocity and pressure field prediction and another CNN for aerodynamic coefficient prediction. The results show that the proposed CNN for field prediction is able to accurately predict the main characteristics of the flow around the flow control device, showing very slight errors. Regarding the aerodynamic coefficients, the proposed CNN is also capable to predict them reliably, being able to properly predict both the trend and the values. In comparison with CFD simulations, the use of the CNNs reduces the computational time in four orders of magnitude.


Sign in / Sign up

Export Citation Format

Share Document