Surrogate model for aerodynamic shape optimization of a tractor-trailer in crosswinds

Author(s):  
Xu Gong ◽  
Zhengqi Gu ◽  
Zhenlei Li

A surrogate model-based aerodynamic shape optimization method applied to the wind deflector of a tractor-trailer is presented in this paper. The aerodynamic drag coefficient of the tractor-trailer with and without the wind deflector subjected to crosswinds is analyzed. The numerical results show that the wind deflector can decrease drag coefficient. Four parameters are used to describe the wind deflector geometry: width, length, height, and angle. A 30-level design of experiments study using the optimal Latin hypercube method was conducted to analyze the sensitivity of the design variables and build a database to set up the surrogate model. The surrogate model was constructed based on the Kriging interpolation technique. The fitting precision of the surrogate model was examined using computational fluid dynamics and certified using a surrogate model simulation. Finally, a multi-island genetic algorithm was used to optimize the shape of the wind deflector based on the surrogate model. The tolerance between the results of the computational fluid dynamics simulation and the surrogate model was only 0.92% when using the optimal design variables, and the aerodynamic drag coefficient decreased by 4.65% compared to the drag coefficient of the tractor-trailer installed with the original wind deflector. The effect of the optimal shape of the wind deflector was validated by computational fluid dynamics and wind tunnel experiment.

Author(s):  
Yiping Wang ◽  
Cheng Wu ◽  
Gangfeng Tan ◽  
Yadong Deng

Numerical investigations are carried out to investigate the reduction in the aerodynamic drag of a vehicle by employing a dimpled non-smooth surface. The computational scheme was validated by the experimental data reported in literature. The mechanism and the effect of the dimpled non-smooth surface on the drag reduction were revealed by analysing the flow field structure of the wake. In order to maximize the drag reduction performance of the dimpled non-smooth surface, an aerodynamic optimization method based on a Kriging surrogate model was employed to design the dimpled non-smooth surface. Four structure parameters were selected as the design variables, and a 16-level design-of-experiments method based on orthogonal arrays was used to analyse the sensitivities and the influences of the variables on the drag coefficient; a surrogate model was constructed from these. Then a multi-island genetic algorithm was employed to obtain the optimal solution for the surrogate model. Finally, the surrogate model and the simulation results showed that the optimal combination of design variables can reduce the aerodynamic drag coefficient by 5.20%.


2009 ◽  
Vol 131 (4) ◽  
Author(s):  
Ramon Miralbes Buil ◽  
Luis Castejon Herrer

The aim of this article is the presentation of a series of aerodynamic improvements for semitrailer tankers, which reduce the aerodynamic resistance of these vehicles, and, consequently, result in a positive impact on fuel consumption, which is substantially reduced (up to 11%). To make the analysis the computational fluid dynamics (CFD) methodology, using FLUENT, has been used since it allows simulating some geometries and modifications of the geometry without making physical prototypes that considerably increase the time and the economical resources needed. Three improvements are studied: the aerodynamic front, the undercarriage skirt, and the final box adaptor. First they are studied in isolation, so that the independent contribution of each improvement can be appreciated, while helping in the selection of the most convenient one. With the aerodynamic front the drag coefficient has a reduction of 6.13%, with the underskirt 9.6%, and with the boat tail 7.72%. Finally, all the improvements are jointly examined, resulting in a decrease of up to 23% in aerodynamic drag coefficient.


2013 ◽  
Vol 415 ◽  
pp. 590-594
Author(s):  
Bo Yang ◽  
Xing Jun Hu ◽  
Lei Liao ◽  
Xu Yan ◽  
Zhi Ming Zhao ◽  
...  

Morphing surface mesh employing a parametric model for the aerodynamic shape optimization of a sedan is presented. This study solved the problem of non-linear deformation in modeling surface morphing by volume mesh, and solved the divergence problem due to bad mesh quality, using automatic grid generation method based on CAD model, in calculation. The optimization process consists of three stages: Design of Experiments (DOE), Approximate Model, and optimization algorithm execution. The optimization process was realized by an automatic optimization system consisting of multiple software platforms. The optimal model's aerodynamic drag coefficient is 10.56% decreased though optimization, and the hood is identified as the major factor in this research.


Sign in / Sign up

Export Citation Format

Share Document