Aerodynamic Analysis of a Vehicle Tanker

2009 ◽  
Vol 131 (4) ◽  
Author(s):  
Ramon Miralbes Buil ◽  
Luis Castejon Herrer

The aim of this article is the presentation of a series of aerodynamic improvements for semitrailer tankers, which reduce the aerodynamic resistance of these vehicles, and, consequently, result in a positive impact on fuel consumption, which is substantially reduced (up to 11%). To make the analysis the computational fluid dynamics (CFD) methodology, using FLUENT, has been used since it allows simulating some geometries and modifications of the geometry without making physical prototypes that considerably increase the time and the economical resources needed. Three improvements are studied: the aerodynamic front, the undercarriage skirt, and the final box adaptor. First they are studied in isolation, so that the independent contribution of each improvement can be appreciated, while helping in the selection of the most convenient one. With the aerodynamic front the drag coefficient has a reduction of 6.13%, with the underskirt 9.6%, and with the boat tail 7.72%. Finally, all the improvements are jointly examined, resulting in a decrease of up to 23% in aerodynamic drag coefficient.


The development of electric vehicles demands minimizing aerodynamic drag in order to provide maximum range. The wheels contribute significantly to overall drag coefficient value because of flow separation from rims and wheel arches. In this paper various design parameters are investigated and their influence on vehicle drag coefficient is presented. The investigation has been done with the help of computational fluid dynamics (CFD) tools and with implementation of full vehicle setup with rotating wheels. The obtained results demonstrate changes in drag coefficient with respect to the change of design parameters.



Author(s):  
Xu Gong ◽  
Zhengqi Gu ◽  
Zhenlei Li

A surrogate model-based aerodynamic shape optimization method applied to the wind deflector of a tractor-trailer is presented in this paper. The aerodynamic drag coefficient of the tractor-trailer with and without the wind deflector subjected to crosswinds is analyzed. The numerical results show that the wind deflector can decrease drag coefficient. Four parameters are used to describe the wind deflector geometry: width, length, height, and angle. A 30-level design of experiments study using the optimal Latin hypercube method was conducted to analyze the sensitivity of the design variables and build a database to set up the surrogate model. The surrogate model was constructed based on the Kriging interpolation technique. The fitting precision of the surrogate model was examined using computational fluid dynamics and certified using a surrogate model simulation. Finally, a multi-island genetic algorithm was used to optimize the shape of the wind deflector based on the surrogate model. The tolerance between the results of the computational fluid dynamics simulation and the surrogate model was only 0.92% when using the optimal design variables, and the aerodynamic drag coefficient decreased by 4.65% compared to the drag coefficient of the tractor-trailer installed with the original wind deflector. The effect of the optimal shape of the wind deflector was validated by computational fluid dynamics and wind tunnel experiment.



Fluids ◽  
2018 ◽  
Vol 3 (4) ◽  
pp. 73 ◽  
Author(s):  
Galih Bangga

The present studies deliver the computational investigations of a 10 MW turbine with a diameter of 205.8 m developed within the framework of the AVATAR (Advanced Aerodynamic Tools for Large Rotors) project. The simulations were carried out using two methods with different fidelity levels, namely the computational fluid dynamics (CFD) and blade element and momentum (BEM) approaches. For this purpose, a new BEM code namely B-GO was developed employing several correction terms and three different polar and spatial interpolation options. Several flow conditions were considered in the simulations, ranging from the design condition to the off-design condition where massive flow separation takes place, challenging the validity of the BEM approach. An excellent agreement is obtained between the BEM computations and the 3D CFD results for all blade regions, even when massive flow separation occurs on the blade inboard area. The results demonstrate that the selection of the polar data can influence the accuracy of the BEM results significantly, where the 3D polar datasets extracted from the CFD simulations are considered the best. The BEM prediction depends on the interpolation order and the blade segment discretization.



Proceedings ◽  
2020 ◽  
Vol 49 (1) ◽  
pp. 159
Author(s):  
Knut Erik Teigen Giljarhus ◽  
Daniel Årrestad Stave ◽  
Luca Oggiano

In professional cycling, even small adjustments in position could mean that valuable seconds are gained over the course of a time-trial race. This study investigates the influence of arm position on the aerodynamic drag of a cyclist. Based on a 3D scanned model of a professional cyclist, 64 alternate positions are generated. The parameters that are investigated are the distance between elbows, elbow extension, and distance between hands. Computational fluid dynamics (CFD) simulations of all positions are performed, and a regression model is built from the results. The results indicate that the optimal posture is achieved for a minimum in all investigated parameters, which means that the hands and elbows should be kept together with hands up towards the face. Furthermore, elbow extension seems to be the most crucial parameter, followed by the distance between elbows, and then by the distance between the hands. The presented methodology can be applied to study other parameters relevant to cycling aerodynamics or be applied to other sport activities as well.



Author(s):  
Nícolas Lima Oliveira ◽  
Eric Vargas Loureiro ◽  
Patrícia Habib Hallak

This work presents the studies  obtained using OpenFOAM OpenSource Computational Fluid Dynamics (CFD) Software. Experiments were performed to predict lift coefficient and drag coefficient curves for the NACA2412 profile. Subsequently, the results obtained were compared with the results of the bibliography and discussed.



Author(s):  
V.I. Tarichko ◽  
◽  
P.I. Shalupina ◽  

An accurate assessment of the characteristics of the aerodynamic resistance to movement is important for the preliminary selection of the parameters of the engine, transmission and chassis of a special wheeled chassis or tractor. The strength of the movement resistance affects the dynamic characteristics of the car. The existing calculation methods allow for a wide variation of the aerodynamic drag coefficient, which complicates the task of preliminary selection of car parameters. The purpose of this article is to clarify and develop the engineering methodology for carrying out traction-dynamic calculations of special wheeled vehicles and tractors based on the results of computer modeling performed using computational fluid and gas dynamics (CFD modeling) methods. The modeling methodology and calculation results of a special wheeled chassis manufactured by JSC «BAZ» are considered.



Author(s):  
Galih Bangga

The present studies deliver the computational investigations of a 10 MW turbine with a diameter of 205.8 m developed within the framework of the AVATAR (Advanced Aerodynamic Tools for Large Rotors) project. The simulations were carried out using two methods with different fidelity levels, namely the computational fluid dynamics (CFD) and blade element and momentum (BEM) approaches. For this purpose, a new BEM code namely B-GO was developed employing several correction terms and three different polar and spatial interpolation options. Several flow conditions were considered in the simulations, ranging from the design condition to the off-design condition where massive flow separation takes place, challenging the validity of the BEM approach. An excellent agreement is obtained between the BEM computations and the 3D CFD results for all blade regions, even when massive flow separation occurs on the blade inboard area. The results demonstrate that the selection of the polar data can influence the accuracy of the BEM results significantly, where the 3D polar datasets extracted from the CFD simulations are considered the best. The BEM prediction depends on the interpolation order and the blade segment discretization.



Author(s):  
Soham Bakshi ◽  
Badih A. Jawad ◽  
Selin Arslan ◽  
Kingman Yee ◽  
Liping Liu

Today’s strict fuel economy requirement produces the need for the cars to have really optimized shapes among other characteristics as optimized cooling packages, reduced weight, to name a few. With the advances in automotive technology, tight global oil resources, lightweight automotive design process becomes a problem deserving important consideration. It is not however always clear how to modify the shape of the exterior of a car in order to minimize its aerodynamic resistance. Air motion is complex and operates differently at different weather conditions. This gap can be covered by the use of adjoint solvers which predict the sensibility of the aerodynamic forces to changes of the geometry. Alternatively, Computational Fluid Dynamics (CFD) solvers can be partnered with optimization software which guide model design changes and evaluate the corresponding results. Design changes can be executed by modifying a parameterized geometry or using mesh morphing techniques. With the advances in computational fluid dynamics, design optimization methods in the aerodynamic design are more important than ever. In the present paper, ANSYS Fluent will be used in conjunction with the optimization software ANSYS DesignXplorer to study ways of reducing drag and lift for a simplified car body. ANSYS simulation software allows one to predict, with confidence, the impact of fluid flows on the product throughout design and manufacturing as well as during end use. CFD is a complex technology involving strongly coupled non-linear partial differential equations which attempt to computationally simulate theoretical and experimental models in a discrete domain of complex geometric shape. A detailed assessment of errors and uncertainties has to concern itself with the three roots of CFD: theory, experiment, and computation. Further, the application of CFD is rapidly expanding with the growth in computational resources. The body in question in this study is the Ahmed body [1] which has been used numerous times for CFD code validation. This geometry represents a road legal car which is used to study the effect of different forces like, aerodynamic drag force, lift force, and some other major forces which affect a car’s motion significantly. Despite being a simple body, accurate prediction of its aerodynamic performance often requires very accurate and computationally expensive calculations. We would like to investigate if meaningful optimizations can be achieved by using reduced resources, by analyzing how air at different velocity affect the body and what changes might be necessary for a further optimized performance. The purpose here is not to predict the absolute values of drag for this body, but to demonstrate that optimization can be performed with limited resources relying on information about drag deltas rather than absolute values. Keeping limiting resources in mind, a grid independence study wasn’t done.



2015 ◽  
Vol 31 (1) ◽  
pp. 48-55 ◽  
Author(s):  
J. Paulo Vilas-Boas ◽  
Rui J. Ramos ◽  
Ricardo J. Fernandes ◽  
António J. Silva ◽  
Abel I. Rouboa ◽  
...  

The aim of this research was to numerically clarify the effect of finger spreading and thumb abduction on the hydrodynamic force generated by the hand and forearm during swimming. A computational fluid dynamics (CFD) analysis of a realistic hand and forearm model obtained using a computer tomography scanner was conducted. A mean flow speed of 2 m·s−1was used to analyze the possible combinations of three finger positions (grouped, partially spread, totally spread), three thumb positions (adducted, partially abducted, totally abducted), three angles of attack (a = 0°, 45°, 90°), and four sweepback angles (y = 0°, 90°, 180°, 270°) to yield a total of 108 simulated situations. The values of the drag coefficient were observed to increase with the angle of attack for all sweepback angles and finger and thumb positions. For y = 0° and 180°, the model with the thumb adducted and with the little finger spread presented higher drag coefficient values for a = 45° and 90°. Lift coefficient values were observed to be very low at a = 0° and 90° for all of the sweepback angles and finger and thumb positions studied, although very similar values are obtained at a = 45°. For y = 0° and 180°, the effect of finger and thumb positions appears to be much most distinct, indicating that having the thumb slightly abducted and the fingers grouped is a preferable position at y = 180°, whereas at y = 0°, having the thumb adducted and fingers slightly spread yielded higher lift values. Results show that finger and thumb positioning in swimming is a determinant of the propulsive force produced during swimming; indeed, this force is dependent on the direction of the flow over the hand and forearm, which changes across the arm’s stroke.



Sign in / Sign up

Export Citation Format

Share Document