divergence problem
Recently Published Documents


TOTAL DOCUMENTS

68
(FIVE YEARS 15)

H-INDEX

13
(FIVE YEARS 2)

2021 ◽  
Vol 81 (12) ◽  
Author(s):  
Koray Düztaş

AbstractIn the conventional approach, fermionic test fields lead to a generic overspinning of black holes resulting in the formation of naked singularities. The absorption of the fermionic test fields with arbitrarily low frequencies is allowed for which the contribution to the angular momentum parameter of the space-time diverges. Recently we have suggested a more subtle treatment of the problem considering the fact that only the fraction of the test fields that is absorbed by the black hole contributes to the space-time parameters. Here, we re-consider the interaction of massless spin (1/2) fields with Kerr and Kerr–Newman black holes, adapting this new approach. We show that the drastic divergence problem disappears when one incorporates the absorption probabilities. Still, there exists a range of parameters for the test fields that can lead to overspinning. We employ backreaction effects due to the self-energy of the test fields which fixes the overspinning problem for fields with relatively large amplitudes, and renders it non-generic for smaller amplitudes. This non-generic overspinning appears likely to be fixed by alternative semi-classical and quantum effects.


2021 ◽  
Vol 2021 ◽  
pp. 1-22
Author(s):  
Juliano dos Santos Becho ◽  
Marcelo Greco

A numerical procedure is presented to avoid the divergence problem during the iterative process in viscoelastic analyses. This problem is observed when the positional formulation of the finite element method is adopted in association with the finite difference method. To do this, the nonlinear positional formulation is presented considering plane frame elements with Bernoulli–Euler kinematics and viscoelastic behavior. The considered geometrical nonlinearity refers to the structural equilibrium analysis in the deformed position using the Newton–Raphson iterative method. However, the considered physical nonlinearity refers to the description of the viscoelastic behavior through the adoption of the stress-strain relation based on the Kelvin–Voigt rheological model. After the presentation of the formulation, a detailed analysis of the divergence problem in the iterative process is performed. Then, an original numerical procedure is presented to avoid the divergence problem based on the retardation time of the adopted rheological model and the penalization of the nodal position correction vector. Based on the developments and the obtained results, it is possible to conclude that the presented formulation is consistent and that the proposed procedure allows for obtaining the equilibrium positions for any time step value adopted without presenting divergence problems during the iterative process and without changing the analysis of the final results.


2021 ◽  
Vol 67 ◽  
pp. 125837
Author(s):  
Ulf Büntgen ◽  
Alexander V. Kirdyanov ◽  
Paul J. Krusic ◽  
Vladimir V. Shishov ◽  
Jan Esper
Keyword(s):  

2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Aneesh V. Manohar ◽  
Emily Nardoni

Abstract We apply effective field theory (EFT) methods to compute the renormalization group improved effective potential for theories with a large mass hierarchy. Our method allows one to compute the effective potential in a systematic expansion in powers of the mass ratio, as well as to sum large logarithms of mass ratios using renormalization group evolution. The effective potential is the sum of one-particle irreducible diagrams (1PI) but information about which diagrams are 1PI is lost after matching to the EFT, since heavy lines get shrunk to a point. We therefore introduce a tadpole condition in place of the 1PI condition, and use the renormalization group improved value of the tadpole in computing the effective potential. We explain why the effective potential computed using an EFT is not the same as the effective potential of the EFT. We illustrate our method using the O(N) model, a theory of two scalars in the unbroken and broken phases, and the Higgs-Yukawa model. Our leading-log result, obtained by integrating the one-loop β-functions, correctly reproduces the log-squared term in explicit two-loop calculations. Our method does not have a Goldstone boson infrared divergence problem.


2020 ◽  
Vol 16 (4) ◽  
pp. 1223-1243
Author(s):  
Martine M. Savard ◽  
Valérie Daux

Abstract. Climatic reconstructions based on tree-ring isotopic series convey substantial information about past conditions prevailing in forested regions of the globe. However, in some cases, the relations between isotopic and climatic records appear unstable over time, generating the “isotopic divergences”. Former reviews have thoroughly discussed the divergence concept for tree-ring physical properties but not for isotopes. Here we want to take stock of the isotopic divergence problem, express concerns and stimulate collaborative work for improving paleoclimatic reconstructions. There are five main causes for divergent parts in isotopic and climatic series: (1) artefacts due to sampling and data treatment, relevant for dealing with long series using sub-fossil stems; (2) stand dynamics, including juvenile effects mostly occurring in the early part of tree-ring series; (3) rise in atmospheric pCO2, which can directly influence the foliar behaviour; (4) change in climate, which may modify the isotope–climate causal links; and finally (5) atmospheric pollution, which may alter leaf and root functions. Future paleoclimate research would benefit from interdisciplinary efforts designed to develop further process-based models integrating multi-proxy inputs so as to help identify causes of isotopic divergences and circumvent some of them in inverse applications.


2020 ◽  
Vol 66 (259) ◽  
pp. 714-726
Author(s):  
Riccardo Cerrato ◽  
Maria Cristina Salvatore ◽  
Björn E. Gunnarson ◽  
Hans W. Linderholm ◽  
Luca Carturan ◽  
...  

AbstractGlacial extent and mass balance are sensitive climate proxies providing solid information on past climatic conditions. However, series of annual mass-balance measurements of more than 60 years are scarce. To our knowledge, this is the first time the latewood density data (MXD) of the Swiss stone pine (Pinus cembra L.) have been used to reconstruct the summer mass balance (Bs) of an Alpine glacier. The MXD-based Bs well correlates with a Bs reconstruction based on the May to September temperature. Winter precipitation has been used as an independent proxy to infer the winter mass balance and to obtain an annual mass-balance (Bn) estimate dating back to the glaciological year 1811/12. The reconstructed MXD/precipitation-based Bn well correlates with the data both of the Careser and of other Alpine glaciers measured by the glaciological method. A number of critical issues should be considered in both proxies, including non-linear response of glacial mass balance to temperature, bedrock topography, ice thinning and fragmentation, MXD acquisition and standardization methods, and finally the ‘divergence problem’ responsible for the recently reduced sensitivity of the dendrochronological data. Nevertheless, our results highlight the possibility of performing MXD-based dendroglaciological reconstructions using this stable and reliable proxy.


Sign in / Sign up

Export Citation Format

Share Document