Numerical simulation of a bird impact on a composite aerodynamic brake wing of a high-speed train

Author(s):  
Zuo Jianyong ◽  
Zhu Xiaoyu ◽  
Wu Mengling
2013 ◽  
Vol 1 (1-2) ◽  
pp. 3-24 ◽  
Author(s):  
Wanming Zhai ◽  
He Xia ◽  
Chengbiao Cai ◽  
Mangmang Gao ◽  
Xiaozhen Li ◽  
...  

2012 ◽  
Vol 226-228 ◽  
pp. 102-105
Author(s):  
Wen Qing Zhu ◽  
Yang Yong Zhu

With the rapid development of high-speed railway in China, the aerodynamic brake is very likely to be an important emergency braking mode of high-speed train in the future. This paper takes aerodynamic braking wing as the object, and uses the finite element software to divide the meshes, then analyses the model influenced by static stress. After simulating the vibratory frequency response of the model in the flow field, it finds that the largest deformation happens in the middle of the upper edge of the wind wing, when the wind speed gets to 500km/h and the load frequency to 4Hz. Some conclusions of this thesis can provide reference for researching the applying the aerodynamic brake in the high-speed trains and laying the foundation for solving the riding and braking safety problems.


2011 ◽  
Vol 101-102 ◽  
pp. 197-201 ◽  
Author(s):  
Zhen Gyu Zheng ◽  
Ren Xian Li

This paper utilized the Boundary Element Method (BEM) combined with the Computational Fluid Dynamics (CFD) based on Lighthill’s analogy in the high-speed train model, and converted the fluctuating flow pressure near the vehicle’s surface into the dipole source boundary condition in acoustics grid, eventually succeeded in completing the numerical simulation of aerodynamic noise field outside the high-speed train by introducing the dipole source boundary condition into the train BEM model. The results show that the main aerodynamic noise controlling area is 15-20 meters away from the track center line in the horizontal direction, and the Sound Press Level (SPL) is 63-72dB.


2013 ◽  
Vol 275-277 ◽  
pp. 767-770
Author(s):  
Hua Li ◽  
Shu Qian Cao

In this paper, the double pendulum model of the pantograph was developed, in which a square angular velocity damping torque was used to describe the nonlinear damping torque of the hydraulic vibration damper, and the catenary was described as a variable stiffness spring. Considering the nonlinear factors caused by hydraulic damping and the interaction between the catenary and the pantograph, the motion differential equations based on the double pendulum model were established in Lagrange equation, and then were simplified. The dynamic characteristics were analyzed through numerical simulation. The result of numerical simulation shows that there are quasi-periodic motion and chaos in the system, which are both affected by the pendulum length ratio. The results are helpful to research the dynamic characteristics of the pantograph of high-speed train.


2017 ◽  
Vol 55 (5) ◽  
pp. 681-703 ◽  
Author(s):  
Ji-qiang Niu ◽  
Dan Zhou ◽  
Tang-hong Liu ◽  
Xi-feng Liang

2021 ◽  
Vol 349 ◽  
pp. 04011
Author(s):  
Radek Doubrava ◽  
Martin Oberthor ◽  
Petr Bělský ◽  
Bohuslav Cabrnoch

Bird strikes are an important phenomenon that must be taken into consideration when designing aircraft. A bird impact experiment provides a direct method to examine the bird strike resistance. However, the design of the aircraft structures usually involves many iterations of design-manufacturing-test and conducting bird impact experiments is not only time consuming but also costly. The aim of this work is to show the application of test verified numerical simulation for the design of composite cowlings of the high-speed helicopter.


Sign in / Sign up

Export Citation Format

Share Document