pendulum model
Recently Published Documents


TOTAL DOCUMENTS

299
(FIVE YEARS 78)

H-INDEX

25
(FIVE YEARS 3)

2022 ◽  
Vol 36 (06) ◽  
Author(s):  
DUONG MIEN KA ◽  
TRAN HUU TOAN

Researches on humanoid robots are alway attractive to many researchers in robotics field. One  of considerable challenges of humanoid robots is to keep balance and stability of their movement. Because a humanoid robot moves by two legs, most of time of the step period of the humanoid robot is be in one leg touching on the floor and the other leg swinging forward. This posture is similar to a three dimension (3D) inverted pendulum model. This papers presents the dynamic model of a 3D inverted pendulum model and applies to balanced motion planning for a humanoid robot. The obtained results show that the robot is able to keep balance during its movements


In the coming decades, humanoid robots will play a rising role in society. The present article discusses their walking control and obstacle avoidance on uneven terrain using enhanced spring-loaded inverted pendulum model (ESLIP). The SLIP model is enhanced by tuning it with an adaptive particle swarm optimization (APSO) approach. It helps the humanoid robot to reach closer to the obstacles in order to optimize the turning angle to optimize the path length. The desired trajectory, along with the sensory data, is provided to the SLIP model, which creates compatible COM (center of mass) dynamics for stable walking. This output is fed to APSO as input, which adjusts the placement of the foot during interaction with uneven surfaces and obstacles. It provides an optimum turning angle for shunning the obstacles and ensures the shortest path length. Simulation has been carried out in a 3D simulator based on the proposed controller and SLIP controller in uneven terrain.


2021 ◽  
Vol 5 (3) ◽  
Author(s):  
N. Kryshchuk

To verify the provisions stated by V.I. Bogomolov, B.I. Puzanov. and Linevich E.I. about the possibility of performing over-unit work by inertial forces, a closed mechanical system in the form of kinematically connected rotating masses is proposed for consideration. The research aimed, within the framework of Newtonian mechanics, to study the fulfillment of the laws of conservation of momentum, angular momentum and energy, to establish the possibility of performing work by inertial forces (centrifugal and Coriolis), to assess the change in kinetic parameters using the example of the Chelomey pendulum model. For the complex radial-circular motion of the masses of the Chelomey pendulum model, resolving equations are obtained. To verify the analytical calculations, algorithms for numerical solutions of the above problems have been developed and implemented in the MathCAD software package


2021 ◽  

Abstract A new two-level hierarchical approach to control the trolley position and payload swinging of an overhead crane is proposed. At the first level, a simple mathematical pendulum model is investigated considering the time delay due to the use of a vision system. In the second level, a chain model is developed, extending the previous pendulum model considering the vibration of the suspending chain. The relative displacement of the payload is measured with a vision sensor, and the rest of the state-space variables are determined by a collocated observer. The gain parameters related to the state variables of the chain vibration are determined by the use of a pole placement method. The proposed controller is verified by numerical simulation and experimentally on a laboratory test bench.


Author(s):  
Marko Mihalec ◽  
Mitja Trkov ◽  
Jingang Yi

Abstract Low-friction foot/ground contacts present a particular challenge for stable bipedal walkers. The slippage of the stance foot introduces complexity in robot dynamics and the general locomotion stability results cannot be applied directly. We relax the commonly used assumption of non-slip contact between the walker foot and the ground and examine bipedal dynamics under foot slip. Using a two-mass linear inverted pendulum model, we introduce the concept of balance recoverability and use it to quantify the balanced or fall-prone walking gaits. Balance recoverability also serves as the basis for the design of the balance recovery controller. We design the within- or multi-step recovery controller to assist the walker to avoid fall. The controller performance is validated through simulation results and robustness is demonstrated in the presence of measurement noises as well as variations of foot/ground friction conditions. In addition, the proposed methods and models are used to analyze the data from human walking experiments. The multiple subject experiments validate and illustrate the balance recoverability concept and analyses.


Aerospace ◽  
2021 ◽  
Vol 8 (10) ◽  
pp. 289
Author(s):  
Tadayoshi Shoyama ◽  
Ayana Banno ◽  
Yousuke Furuta ◽  
Noboru Kurata ◽  
Daisuke Ode ◽  
...  

The method of air-launching a rocket using a launcher suspended from a balloon, referred to as a rockoon, can improve the flight performance of small rockets. However, there have been safety issues and flight trajectory errors due to uncertainty with respect to the launch direction. Air-launch experiments were performed to demonstrate a rail launcher equipped with a control moment gyroscope to actively control the azimuth angle. As a preliminary study, it was suspended via a crane instead of a balloon. The rockets successfully flew along the target azimuth line and impacted the predicted safe area. The elevation angle of the launcher rail exhibited a fluctuation composed of two frequency components. A double-pendulum model with a rigid rod suspended by a wire was proposed to predict this behavior. Significant design parameters and error sources were investigated using this model, revealing the constraining effect of a large mass above the wire and elevation angle fluctuation, which caused trajectory errors due to the friction force on the rail guide and thrust misalignment. Finally, tradeoffs in designing the rail length were found between the launcher clear velocity and elevation fluctuations.


Author(s):  
N. Kryshchuk ◽  
A. Tsybenko ◽  
Y. Lavrenko ◽  
A. Oleshchuk A.

Abstract. To verify the provisions stated by V.I. Bogomolov, B.I. Puzanov. and Linevich E.I. about the possibility of performing over-unit work by inertial forces, a closed mechanical system in the form of kinematically connected rotating masses is proposed for consideration. The research aimed, within the framework of Newtonian mechanics, to study the fulfillment of the laws of conservation of momentum, angular momentum and energy, to establish the possibility of performing work by inertial forces (centrifugal and Coriolis), to assess the change in kinetic parameters using the example of the Chelomey pendulum model. For the complex radial-circular motion of the masses of the Chelomey pendulum model, resolving equations are obtained. To verify the analytical calculations, algorithms for numerical solutions of the above problems have been developed and implemented in the MathCAD software package.


Author(s):  
Minghui Xia ◽  
Xiaokai Wang ◽  
Qingxiang Wu ◽  
Lin Hua

In the assembly workshops of some heavy special equipment, the bridge cranes for payload lifting often needs to be located frequently. However, the locating position is often determined by the operator, which is random and results in significant payload oscillation and difficulties in trolley positioning. Furthermore, in practice, the bridge crane always exhibits more complicated double-pendulum dynamics compared with single-pendulum crane. To solve these problems, this paper establishes the double-pendulum model of bridge crane. Derived from the proportional-derivative (PD) control, the single closed-loop is designed based on the hook oscillation during acceleration and transporting; when locating, the double closed-loop is presented by utilizing the position and the hook oscillation. Combining the two control methods, a single and double closed-loop compound anti-sway control (SDCAC) method for the bridge crane is proposed. On this basis, to improve the performance of the SDCAC system, the sequential quadratic optimization (SQP) method is adopted to optimize PD parameters. Besides, a novel bumpless transfer control method is proposed to realize the smooth transition between the two control modes. Finally, the simulations and experiments are conducted. The results demonstrate the effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document