A novel model reduction approach for linear time-invariant systems via enhanced PSO-DV algorithm and improved MPPA method

Author(s):  
G Vasu ◽  
M Sivakumar ◽  
M Ramalingaraju

In this article, the combination of stochastic search and conventional approaches are used to develop an optimal frequency-domain model order reduction method for determining the stable and accurate reduced-order model for the stable large-scale linear time-invariant systems. The method uses the enhanced particle swarm optimization with differentially perturbed velocity algorithm to determine the denominator polynomial coefficients of the reduced-order model, whereas the numerator polynomial coefficients of the reduced-order model are determined by using an improved multi-point Padé approximation method. The method generates an optimum reduced-order model by minimizing an objective function [Formula: see text], which is formulated using two functions. The first function, [Formula: see text], evaluates the measure of integral squared error between the step responses of the original system and the reduced-order model. And the second function evaluates the measure of retention of full impulse response energy of the original system in the reduced-order model. Therefore, by minimizing the objective function ‘ E’, the proposed method is guaranteed for preserving passivity, stability and the accuracy of the original higher order system in the reduced-order model. The proposed method is extended to the linear time-invariant multi-input multi-output system. In this case, an optimal reduced-order model is determined by minimizing a single objective function [Formula: see text], which is formulated by linear scalarizing of all the objective function [Formula: see text] components. The method is popular for preserving stability, passivity and accuracy of the original system in the reduced-order model. The validation of the method is shown by applying to a sixth-order single-input single-output hydropower system model as well as to the seventh-order two-area multi-input multi-output power system model. The comparison of the simulation results of integral squared error and impulse response energy values of the reduced-order models demonstrates the dominance of the proposed method than the existing reduction methods available in the literature.

2021 ◽  
Author(s):  
Ram Kumar ◽  
Afzal Sikander

Abstract The Coulomb and Franklin laws (CFL) algorithm is used to construct a lower order model of higher-order continuous time linear time-invariant (LTI) systems in this study. CFL is quite easy to implement in obtaining reduced order model of large scale system in control engineering problem as it employs the combined effect of Coulomb’s and Franklin’s laws to find the best values in search space. The unknown coefficients are obtained using the CFLA methodology, which minimises the integral square error (ISE) between the original and proposed ROMs. To achieve the reduced order model, five practical systems of different orders are considered. Finally, multiple performance indicators such as the ISE, integral of absolute error (IAE), and integral of time multiplied by absolute error were calculated to determine the efficacy of the proposed methodology. The simulation results were compared to previously published well-known research.


1984 ◽  
Vol 106 (2) ◽  
pp. 176-178 ◽  
Author(s):  
R. G. Jacquot

Optimal deterministic observers are derived for all first order linear time invariant systems. The optimization process consists of minimizing an objective function which is quadratic in the observer gain and in the estimation error. The objective function was chosen such that the resulting observer gains would be independent of system initial-condition which would, in general, be unknown to the state estimator. The results of this optimization are sensible in the light of the stochastic estimation results of Kalman.


Sign in / Sign up

Export Citation Format

Share Document