linear time invariant systems
Recently Published Documents


TOTAL DOCUMENTS

667
(FIVE YEARS 100)

H-INDEX

44
(FIVE YEARS 3)

Author(s):  
Robert Peruzzi

Forensic analysis in this case involves the design of a communication system intended for use in Quick Service Restaurant (QSR) drive-thru lanes. This paper provides an overview of QSR communication system components and operation and introduces communication systems and channels. This paper provides an overview of non-linear, time-varying system design as contrasted with linear, time-invariant systems and discusses best design practices. It also provides the details of how audio quality was defined and compared for two potentially competing systems. Conclusions include that one of the systems was clearly inferior to the other — mainly due to not following design techniques that were available at the time of the project.


2021 ◽  
pp. 714-796
Author(s):  
Stevan Berber

Chapter 15 presents a detailed analysis of discrete-time signals and systems in the frequency domain, including the theory of the discrete Fourier series, the discrete-time Fourier transform, and the discrete Fourier transform, and key examples relevant for the analysis and synthesis of signals processed in the discrete transceiver blocks of a communication system. Amplitude spectra, magnitude spectra, phase spectra, and power spectra are defined and calculated for typical signals. Using a unique notation that distinguishes between energy signals and power signals, the correlation function and power or energy spectral density functions are inter-related by proving the Wiener–Khintchine theorem. A comprehensive analysis of linear-time-invariant systems, using the notions of impulse responses, correlation functions, and power spectral densities for both power and energy signals, is presented. The basic theory of the z-transform is also presented.


2021 ◽  
pp. 562-598
Author(s):  
Stevan Berber

Due to the importance of the concept of independent variable modification, the definition of linear-time-invariant system, and their implications for discrete-time signal processing, Chapter 11 presents basic deterministic continuous-time signals and systems. These signals, expressed in the form of functions and functionals such as the Dirac delta function, are used throughout the book for deterministic and stochastic signal analysis, in both the continuous-time and the discrete-time domains. The definition of the autocorrelation function, and an explanation of the convolution procedure in linear-time-invariant systems, are presented in detail, due to their importance in communication systems analysis and synthesis. A linear modification of the independent continuous variable is presented for specific cases, like time shift, time reversal, and time and amplitude scaling.


Sign in / Sign up

Export Citation Format

Share Document