state estimator
Recently Published Documents


TOTAL DOCUMENTS

841
(FIVE YEARS 171)

H-INDEX

39
(FIVE YEARS 5)

2021 ◽  
Vol 6 (4) ◽  
Author(s):  
Khalid K. Dandago ◽  
Ameer Mohammed ◽  
Osichinaka C. Ubadike ◽  
Mahmud S. Zango ◽  
Abdulbasit Hassan ◽  
...  

A robust model is essential for the design of system components such as controllers, observers state estimators, and simulators. State estimators are becoming increasingly important in modern systems, especially systems with states that may not be measured with sensors. Therefore, it is imperative to analyze the performance of different modelling and state estimator design techniques. In this research work, a parametric model of a pick and place robotic arm was obtained using system identification technique. Pick and place robotic arms have a lot of industrial applications. The parameters of the obtained model were determined using the general second-order characteristics equation and manual tuning. Furthermore, five state estimators were designed based on the developed model. The accuracy of the model, and the performance of the observers were analyzed. The model was found to provide a good representation of the system. Nonetheless, with very small divergence between the model and the real system. The performance of the observers was found to be dependent on their pole locations; the higher the magnitude of the poles, the higher the state estimators’ gain and the better the estimation provided. It was found out that the state estimators with high gains were more susceptible to measurement noise. Keywords— Modelling, pick and place robots, observers, and state estimators.


2021 ◽  
Vol 2113 (1) ◽  
pp. 012011
Author(s):  
Qiang Zhang ◽  
Jun Xiao ◽  
Xiuhao Xi

Abstract Estimation of vehicle longitudinal acceleration is very important in vehicle active safety control system. In this paper, two driving conditions of a 4WD off-road vehicle are divided by vehicle signals such as steering angle. Under different working conditions, different estimation algorithms are adopted. In the straight driving condition, the longitudinal speed was estimated by adjusting the variance weight of acceleration Kalman observation noise based on kinematics method. For steering conditions, in order to obtain the longitudinal velocity at the center of mass, by dynamic method, a lateral state estimator was designed and tire sideslip dynamics was modeled. The CarSim-Simulink co-simulation results show that the proposed algorithm has high accuracy and strong practicability.


Automatica ◽  
2021 ◽  
Vol 133 ◽  
pp. 109869
Author(s):  
Tianju Sui ◽  
Xi-Ming Sun

2021 ◽  
Author(s):  
Camila Gonzalez A ◽  
Elly V. Acosta ◽  
Juan C. Mazo R ◽  
Carlos Ocampo-Martinez ◽  
Diego A. Munoz

Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6787
Author(s):  
Arturo S. Bretas ◽  
Newton G. Bretas ◽  
Julio A. D. Massignan ◽  
João B. A. London Junior

State-of-the art physics-model based dynamic state estimation generally relies on the assumption that the system’s transition matrix is always correct, the one that relates the states in two different time instants, which might not hold always on real-life applications. Further, while making such assumptions, state-of-the-art dynamic state estimation models become unable to discriminate among different types of anomalies, as measurement gross errors and sudden load changes, and thus automatically leads the state estimator framework to inaccuracy. Towards the solution of this important challenge, in this work, a hybrid adaptive dynamic state estimator framework is presented. Based on the Kalman Filter formulation, measurement innovation analytical-based tests are presented and integrated into the state estimator framework. Gross measurement errors and sudden load changes are automatically detected, identified, and corrected, providing continuous updating of the state estimator. Towards such, the asymmetry index applied to the measurement innovation is introduced, as an anomaly discrimination method, which assesses the physics-model-based dynamic state estimation process in different piece-wise stationary levels. Comparative tests with the state-of-the-art are presented, considering the IEEE 14, IEEE 30, and IEEE 118 test systems. Easy-to-implement-model, without hard-to-design parameters, build-on the classical Kalman Filter solution, highlights potential aspects towards real-life applications.


Sign in / Sign up

Export Citation Format

Share Document