Dynamics of Acacia aneura—Triodia boundaries using carbon (14C and δ 13C) and nitrogen (δ15N) signatures in soil organic matter in central Australia

The Holocene ◽  
2007 ◽  
Vol 17 (3) ◽  
pp. 311-318 ◽  
Author(s):  
D.M.J.S. Bowman ◽  
Guy S. Boggs ◽  
Lynda D. Prior ◽  
Evelyn S. Krull
Soil Research ◽  
2005 ◽  
Vol 43 (1) ◽  
pp. 13 ◽  
Author(s):  
R. C. Dalal ◽  
B.P. Harms ◽  
E. Krull ◽  
W.J. Wang

Mulga (Acacia aneura) dominated vegetation originally occupied 11.2 Mha in Queensland, of which 12% has been cleared, mostly for pasture production, but some areas are also used for cereal cropping. Since mulga communities generally occupy fragile soils, mostly Kandosols and Tenosols, in semi-arid environments, clearing of mulga, which continues at a rate of at least 35 000 ha/year in Queensland, has considerable impact on soil organic carbon (C), and may also have implications for the greenhouse gas emissions associated with land use change in Australia. We report here the changes in soil C and labile C pools following mulga clearing to buffel pasture (Cenchrus ciliaris) and cereal (mostly wheat) cropping for 20 years in a study using paired sites. Soil organic C in the top 0.05 m of soil declined by 31% and 35% under buffel pasture and cropping, respectively. Land use change from mulga to buffel and cropping led to declines in soil organic C of 2.4 and 4.7 t/ha, respectively, from the top 0.3 m of soil. Using changes in the δ13C values of soil organic C as an approximate representation of C derived from C3 and C4 vegetation from mulga and buffel, respectively, up to 31% of soil C was C4-derived after 20 years of buffel pasture. The turnover rates of mulga-derived soil C ranged from 0.035/year in the 0–0.05 m depth to 0.008/year in the 0.6–1 m depths, with respective turnover times of 29 and 133 years. Soil organic matter quality, as measured by the proportion/amount of labile fraction C (light fraction, < 1.6 t/m3) declined by 55% throughout the soil profile (0–1 m depth) under both pasture and cropping. There is immediate concern for the long-term sustainable use of land where mulga has been cleared for pasture and/or cropping with a continuing decline in soil organic matter quality and, hence, soil fertility and biomass productivity. In addition, the removal of mulga forest over a 20-year period in Queensland for pasture and cropping may have contributed to the atmosphere at least 12 Mt CO2-equivalents.


Soil Research ◽  
2005 ◽  
Vol 43 (2) ◽  
pp. 179 ◽  
Author(s):  
R. C. Dalal ◽  
B. P. Harms ◽  
E. Krull ◽  
W. J. Wang ◽  
N. J. Mathers

Mulga (Acacia aneura) woodlands and open forests occupy about 150 Mha in Australia, and originally occupied 11.2 Mha in Queensland. Substantial areas (1.3 Mha) of the mulga vegetation have been cleared in Queensland, mostly for pasture production, but some areas are also used for cereal cropping. Twenty years after mulga clearing we found a significant loss of total soil organic C (28–35% from the 0–0.05 m depth) and light fraction C (>50% from the 0–1 m depth) from soil under pasture and cropping at a site in southern Queensland. We report here the changes in soil N and labile N pools in a paired-site study following conversion of mulga to buffel pasture (Cenchrus ciliaris) and cereal (mostly wheat) cropping for more than 20 years. Conversion from mulga forest to pasture and cultivation resulted in greater losses of soil N than organic C in the top 0.1 m depths. As a result, C/N ratios in soil under both pasture and cropping were higher than soil under mulga, indicating a decline in soil organic matter quality after mulga clearing. Although land-use change had no significant effect on 15N natural abundance (δ15N) values of total soil N down to a depth of 1 m, δ15N values of wheat tops and roots indicated that the primary source of N under cropping was soil organic N, while that of buffel pasture was a mixed source of soil N and decomposed litter and root N. Light fraction N (<1.6 Mg/m3) declined by 60–70% throughout the 1 m soil profile under pasture and cropping, but it was 15N-enriched in these 2 land-use systems. The δ15N values of mulga phyllodes, twigs, and fine roots, indicated an input of atmospheric fixed N2 that was estimated to be about 25 kg N/ha.year. However, the source and magnitude of this N resource needs to be confirmed. Soil N losses were estimated to be 12 kg N/ha.year under pasture and 17 kg N/ha.year under cropping over a 20-year period. These findings raise the issue of the long-term sustainable use of cleared mulga areas for pasture and/or cropping. The labile C and N pools and N mineralised also declined, which would have an immediate adverse effect on soil fertility and plant productivity of cleared Mulga Lands, as well as reducing their potential as a soil sink for greenhouse gases.


1962 ◽  
Vol 54 (5) ◽  
pp. 470-470
Author(s):  
T. M. McCalla

Sign in / Sign up

Export Citation Format

Share Document