Total soil organic matter and its labile pools following mulga (Acacia aneura) clearing for pasture development and cropping 1. Total and labile carbon

Soil Research ◽  
2005 ◽  
Vol 43 (1) ◽  
pp. 13 ◽  
Author(s):  
R. C. Dalal ◽  
B.P. Harms ◽  
E. Krull ◽  
W.J. Wang

Mulga (Acacia aneura) dominated vegetation originally occupied 11.2 Mha in Queensland, of which 12% has been cleared, mostly for pasture production, but some areas are also used for cereal cropping. Since mulga communities generally occupy fragile soils, mostly Kandosols and Tenosols, in semi-arid environments, clearing of mulga, which continues at a rate of at least 35 000 ha/year in Queensland, has considerable impact on soil organic carbon (C), and may also have implications for the greenhouse gas emissions associated with land use change in Australia. We report here the changes in soil C and labile C pools following mulga clearing to buffel pasture (Cenchrus ciliaris) and cereal (mostly wheat) cropping for 20 years in a study using paired sites. Soil organic C in the top 0.05 m of soil declined by 31% and 35% under buffel pasture and cropping, respectively. Land use change from mulga to buffel and cropping led to declines in soil organic C of 2.4 and 4.7 t/ha, respectively, from the top 0.3 m of soil. Using changes in the δ13C values of soil organic C as an approximate representation of C derived from C3 and C4 vegetation from mulga and buffel, respectively, up to 31% of soil C was C4-derived after 20 years of buffel pasture. The turnover rates of mulga-derived soil C ranged from 0.035/year in the 0–0.05 m depth to 0.008/year in the 0.6–1 m depths, with respective turnover times of 29 and 133 years. Soil organic matter quality, as measured by the proportion/amount of labile fraction C (light fraction, < 1.6 t/m3) declined by 55% throughout the soil profile (0–1 m depth) under both pasture and cropping. There is immediate concern for the long-term sustainable use of land where mulga has been cleared for pasture and/or cropping with a continuing decline in soil organic matter quality and, hence, soil fertility and biomass productivity. In addition, the removal of mulga forest over a 20-year period in Queensland for pasture and cropping may have contributed to the atmosphere at least 12 Mt CO2-equivalents.

Soil Research ◽  
2005 ◽  
Vol 43 (2) ◽  
pp. 179 ◽  
Author(s):  
R. C. Dalal ◽  
B. P. Harms ◽  
E. Krull ◽  
W. J. Wang ◽  
N. J. Mathers

Mulga (Acacia aneura) woodlands and open forests occupy about 150 Mha in Australia, and originally occupied 11.2 Mha in Queensland. Substantial areas (1.3 Mha) of the mulga vegetation have been cleared in Queensland, mostly for pasture production, but some areas are also used for cereal cropping. Twenty years after mulga clearing we found a significant loss of total soil organic C (28–35% from the 0–0.05 m depth) and light fraction C (>50% from the 0–1 m depth) from soil under pasture and cropping at a site in southern Queensland. We report here the changes in soil N and labile N pools in a paired-site study following conversion of mulga to buffel pasture (Cenchrus ciliaris) and cereal (mostly wheat) cropping for more than 20 years. Conversion from mulga forest to pasture and cultivation resulted in greater losses of soil N than organic C in the top 0.1 m depths. As a result, C/N ratios in soil under both pasture and cropping were higher than soil under mulga, indicating a decline in soil organic matter quality after mulga clearing. Although land-use change had no significant effect on 15N natural abundance (δ15N) values of total soil N down to a depth of 1 m, δ15N values of wheat tops and roots indicated that the primary source of N under cropping was soil organic N, while that of buffel pasture was a mixed source of soil N and decomposed litter and root N. Light fraction N (<1.6 Mg/m3) declined by 60–70% throughout the 1 m soil profile under pasture and cropping, but it was 15N-enriched in these 2 land-use systems. The δ15N values of mulga phyllodes, twigs, and fine roots, indicated an input of atmospheric fixed N2 that was estimated to be about 25 kg N/ha.year. However, the source and magnitude of this N resource needs to be confirmed. Soil N losses were estimated to be 12 kg N/ha.year under pasture and 17 kg N/ha.year under cropping over a 20-year period. These findings raise the issue of the long-term sustainable use of cleared mulga areas for pasture and/or cropping. The labile C and N pools and N mineralised also declined, which would have an immediate adverse effect on soil fertility and plant productivity of cleared Mulga Lands, as well as reducing their potential as a soil sink for greenhouse gases.


PLoS ONE ◽  
2018 ◽  
Vol 13 (5) ◽  
pp. e0196581 ◽  
Author(s):  
Bryony E. A. Dignam ◽  
Maureen O’Callaghan ◽  
Leo M. Condron ◽  
George A. Kowalchuk ◽  
Joy D. Van Nostrand ◽  
...  

2020 ◽  
Vol 199 ◽  
pp. 104573
Author(s):  
Avijit Ghosh ◽  
Anshuman Das ◽  
Debarup Das ◽  
Prasenjit Ray ◽  
Ranjan Bhattacharyya ◽  
...  

SOIL ◽  
2018 ◽  
Vol 4 (4) ◽  
pp. 251-257 ◽  
Author(s):  
Natalia Andrea Osinaga ◽  
Carina Rosa Álvarez ◽  
Miguel Angel Taboada

Abstract. The subhumid Chaco region of Argentina, originally covered by dry sclerophyll forest, has been subjected to clearing since the end of the 1970s and replacement of the forest by no-till farming. Land use changes produced a decrease in aboveground carbon (C) stored in forests, but little is known about the impact on soil organic C stocks. The aim of this study was to evaluate soil C stocks and C fractions up to 1 m depth in soils under different land use: <10-year continuous cropping, >20-year continuous cropping, warm-season grass pasture and native forest in 32 sites distributed over the Chaco region. The organic C stock content up to 1 m depth expressed as equivalent mass varied as follows: forest (119.3 Mg ha−1) > pasture (87.9 Mg ha−1) > continuous cropping (71.9 and 77.3 Mg ha−1), with no impact of the number of years under cropping. The coarse particle fraction (2000–212 µm) at 0–5 and 5–20 cm depth layers was the most sensitive organic carbon fraction to land use change. Resistant carbon (<53 µm) was the main organic matter fraction in all sample categories except in the forest. Organic C stock, its quality and its distribution in the profile were responsive to land use change. The conversion of the Chaco forest to crops was associated with a decrease of organic C stock up to 1 m depth and with the decrease of the labile fraction. The permanent pastures of warm-season grasses allowed higher C stocks to be sustained than cropping systems and so could be considered a sustainable land use system in terms of soil C preservation. As soil organic C losses were not restricted to the first few centimetres of the soil, the development of models that would allow the estimation of soil organic C changes in depth would be useful to evaluate the impact of land use change on C stocks with greater precision.


2019 ◽  
Vol 135 ◽  
pp. 396-406 ◽  
Author(s):  
Bryony E.A. Dignam ◽  
Maureen O'Callaghan ◽  
Leo M. Condron ◽  
Jos M. Raaijmakers ◽  
George A. Kowalchuk ◽  
...  

2001 ◽  
Vol 81 (3) ◽  
pp. 349-355 ◽  
Author(s):  
D. F. E. McArthur ◽  
P M Huang ◽  
L M Kozak

Research has suggested a link between the bioavailability of soil Cd and total soil organic matter. However, some research suggested a negative relationship between total soil organic matter and bioavailable soil Cd while other research suggested a positive relationship. This study investigated the relationship between soil Cd and both the quantity and quality of soil organic matter as influenced by long-term cultivation. Two Orthic Chernozemic surface soil samples, one from a virgin prairie and the other from an adjacent cultivated prairie, were collected from each of 12 different sites throughout southern Saskatchewan, Canada. The samples were analyzed for total organic C, total Cd, Cd availability index (CAI), and pH. The nature of the soil organic matter was investigated with 13C Cross Polarization Magic Angle Spinning Nuclear Magnetic Resonance spectroscopy (13C CPMAS NMR). The total soil Cd, CAI, and total soil organic C of the cultivated soils were significantly lower than those of the virgin soils whereas the opposite trend was observed for the soil pH and the aromaticity of the organic C. The reduced CAI in the cultivated soils was related to the increase in both the soil pH and the aromaticity of the organic C. No relationship was found between the CAI and the soil organic C content, but a significant positive correlation was found between total organic C and total Cd in both the virgin and the cultivated soils. As well, a significant positive correlation was found between the fraction of total Cd removed from the soil after long-term cultivation and the corresponding fraction of organic C removed. Key words: Long-term cultivation, soil organic matter, 13C CPMAS NMR, cadmium


2001 ◽  
Vol 81 (1) ◽  
pp. 21-31 ◽  
Author(s):  
E G Gregorich ◽  
C F Drury ◽  
J A Baldock

Legume-based cropping systems could help to increase crop productivity and soil organic matter levels, thereby enhancing soil quality, as well as having the additional benefit of sequestering atmospheric C. To evaluate the effects of 35 yr of maize monoculture and legume-based cropping on soil C levels and residue retention, we measured organic C and 13C natural abundance in soils under: fertilized and unfertilized maize (Zea mays L.), both in monoculture and legume-based [maize-oat (Avena sativa L.)-alfalfa (Medicago sativa L.)-alfalfa] rotations; fertilized and unfertilized systems of continuous grass (Poa pratensis L.); and under forest. Solid state 13C nuclear magnetic resonance (NMR) was used to chemically characterize the organic matter in plant residues and soils. Soils (70-cm depth) under maize cropping had about 30-40% less C, and those under continuous grass had about 16% less C, than those under adjacent forest. Qualitative differences in crop residues were important in these systems, because quantitative differences in net primary productivity and C inputs in the different agroecosystems did not account for observed differences in total soil C. Cropping sequence (i.e., rotation or monoculture) had a greater effect on soil C levels than application of fertilizer. The difference in soil C levels between rotation and monoculture maize systems was about 20 Mg C ha-1. The effects of fertilization on soil C were small (~6 Mg C ha-1), and differences were observed only in the monoculture system. The NMR results suggest that the chemical composition of organic matter was little affected by the nature of crop residues returned to the soil. The total quantity of maize-derived soil C was different in each system, because the quantity of maize residue returned to the soil was different; hence the maize-derived soil C ranged from 23 Mg ha-1 in the fertilized and 14 Mg ha-1 in the unfertilized monoculture soils (i.e., after 35 maize crops) to 6-7 Mg ha-1 in both the fertilized and unfertilized legume-based rotation soils (i.e., after eight maize crops). The proportion of maize residue C returned to the soil and retained as soil organic C (i.e., Mg maize-derived soil C/Mg maize residue) was about 14% for all maize cropping systems. The quantity of C3-C below the plow layer in legume-based rotation was 40% greater than that in monoculture and about the same as that under either continuous grass or forest. The soil organic matter below the plow layer in soil under the legume-based rotation appeared to be in a more biologically resistant form (i.e., higher aromatic C content) compared with that under monoculture. The retention of maize residue C as soil organic matter was four to five times greater below the plow layer than that within the plow layer. We conclude that residue quality plays a key role in increasing the retention of soil C in agroecosystems and that soils under legume-based rotation tend to be more “preservative” of residue C inputs, particularly from root inputs, than soils under monoculture. Key words: Soil carbon, 13C natural abundance, 13C nuclear magnetic resonance, maize cropping, legumes, root carbon


2018 ◽  
Vol 18 (8) ◽  
pp. 2748-2748 ◽  
Author(s):  
Gabriela Barančíková ◽  
Maria Jerzykiewicz ◽  
Erika Gömöryová ◽  
Erika Tobiašová ◽  
Tadeáš Litavec

2020 ◽  
Vol 31 (7) ◽  
pp. 909-923 ◽  
Author(s):  
Rafael da Silva Teixeira ◽  
Ricardo Cardoso Fialho ◽  
Daniela Cristina Costa ◽  
Rodrigo Nogueira Sousa ◽  
Rafael Silva Santos ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document