Mixed-effects location and scale Tobit joint models for heterogeneous longitudinal data with skewness, detection limits, and measurement errors

2017 ◽  
Vol 27 (12) ◽  
pp. 3525-3543
Author(s):  
Tao Lu

The joint modeling of mean and variance for longitudinal data is an active research area. This type of model has the advantage of accounting for heteroscedasticity commonly observed in between and within subject variations. Most of researches focus on improving the estimating efficiency but ignore many data features frequently encountered in practice. In this article, we develop a mixed-effects location scale joint model that concurrently accounts for longitudinal data with multiple features. Specifically, our joint model handles heterogeneity, skewness, limit of detection, measurement errors in covariates which are typically observed in the collection of longitudinal data from many studies. We employ a Bayesian approach for making inference on the joint model. The proposed model and method are applied to an AIDS study. Simulation studies are performed to assess the performance of the proposed method. Alternative models under different conditions are compared.

2012 ◽  
Vol 2012 ◽  
pp. 1-19 ◽  
Author(s):  
Getachew A. Dagne ◽  
Yangxin Huang

Complex longitudinal data are commonly analyzed using nonlinear mixed-effects (NLME) models with a normal distribution. However, a departure from normality may lead to invalid inference and unreasonable parameter estimates. Some covariates may be measured with substantial errors, and the response observations may also be subjected to left-censoring due to a detection limit. Inferential procedures can be complicated dramatically when such data with asymmetric characteristics, left censoring, and measurement errors are analyzed. There is relatively little work concerning all of the three features simultaneously. In this paper, we jointly investigate a skew-tNLME Tobit model for response (with left censoring) process and a skew-tnonparametric mixed-effects model for covariate (with measurement errors) process under a Bayesian framework. A real data example is used to illustrate the proposed methods.


2019 ◽  
Author(s):  
Eleni-Rosalina Andrinopoulou ◽  
John Paul Clancy ◽  
Rhonda Szczesniak

Abstract Background: Attenuated decreases in lung function can signal the onset of acute respiratory events known as pulmonary exacerbation (PEs) in children and adolescents with cystic fibrosis (CF). Univariate joint modeling facilitates dynamic risk prediction of PE onset and accounts for measurement error of the lung function marker. However, CF is a multi-system disease and the extent to which simultaneously modeling growth and nutrition markers improves PE predictive accuracy is unknown. Furthermore, it is unclear which routinely collected clinical indicators of growth and nutrition in early life predict PE onset in CF. Methods: Using a longitudinal cohort of 17,100 patients aged 6-20 years (US Cystic Fibrosis Foundation Patient Registry; 2003-2015), we fit a univariate joint model of lung-function decline and PE onset and contrasted its predictive performance with a class of multivariate joint models that included combinations of growth markers as additional submodels. Outcomes were longitudinal lung function (forced expiratory volume in 1 s of % predicted), percentile measures of body mass index, weight-for-age and height-for-age and PE onset. Relevant demographic/clinical covariates were included in each submodel. We implemented a univariate joint model of lung function and time-to-PE and four multivariate joint models including growth outcomes. Results: All five joint models showed that declining lung function corresponded to slightly increased risk of PE onset (hazard ratio from univariate joint model: 0.97, P < 0.0001), and all had reasonable predictive accuracy (cross-validated area under the receiver-operator characteristic curve > 0.70). None of the growth markers alongside lung function as outcomes in multivariate joint modeling appeared to have an association with hazard of PE. Jointly modeling only lung function and PE onset yielded the most accurate (area under the receiver-operator characteristic curve = 0.75) and precise (narrowest interquartile range) predictions. Dynamic predictions were accurate across forecast horizons (0.5, 1 and 2 years) and precision improved with age. Conclusions: Including growth markers via multivariate joint models did not yield gains in prediction performance, compared to a univariate joint model with lung function. However, the joint-modeling approach itself may be useful for monitoring CF disease progression by providing a means of dynamic risk prediction.


2019 ◽  
Vol 6 (1) ◽  
pp. 223-240 ◽  
Author(s):  
Grigorios Papageorgiou ◽  
Katya Mauff ◽  
Anirudh Tomer ◽  
Dimitris Rizopoulos

In this review, we present an overview of joint models for longitudinal and time-to-event data. We introduce a generalized formulation for the joint model that incorporates multiple longitudinal outcomes of varying types. We focus on extensions for the parametrization of the association structure that links the longitudinal and time-to-event outcomes, estimation techniques, and dynamic predictions. We also outline the software available for the application of these models.


2020 ◽  
Author(s):  
Eleni-Rosalina Andrinopoulou ◽  
John Paul Clancy ◽  
Rhonda Szczesniak

Abstract Background: Attenuated decreases in lung function can signal the onset of acute respiratory events known as pulmonary exacerbations (PEs) in children and adolescents with cystic fibrosis (CF). Univariate joint modeling facilitates dynamic risk prediction of PE onset and accounts for measurement error of the lung function marker. However, CF is a multi-system disease and the extent to which simultaneously modeling growth and nutrition markers improves PE predictive accuracy is unknown. Furthermore, it is unclear which routinely collected clinical indicators of growth and nutrition in early life predict PE onset in CF. Methods: Using a longitudinal cohort of 17,100 patients aged 6-20 years (US Cystic Fibrosis Foundation Patient Registry; 2003-2015), we fit a univariate joint model of lung-function decline and PE onset and contrasted its predictive performance with a class of multivariate joint models that included combinations of growth markers as additional submodels. Outcomes were longitudinal lung function (forced expiratory volume in 1 s of % predicted), percentiles of body mass index, weight-for-age and height-for-age and PE onset. Relevant demographic/clinical covariates were included in submodels. We implemented a univariate joint model of lung function and time-to-PE and four multivariate joint models including growth outcomes. Results: All five joint models showed that declining lung function corresponded to slightly increased risk of PE onset (hazard ratio from univariate joint model: 0.97, P < 0.0001), and all had reasonable predictive accuracy (cross-validated area under the receiver-operator characteristic curve > 0.70). None of the growth markers alongside lung function as outcomes in multivariate joint modeling appeared to have an association with hazard of PE. Jointly modeling only lung function and PE onset yielded the most accurate (area under the receiver-operator characteristic curve = 0.75) and precise (narrowest interquartile range) predictions. Dynamic predictions were accurate across forecast horizons (0.5, 1 and 2 years) and precision improved with age. Conclusions: Including growth markers via multivariate joint models did not yield gains in prediction performance, compared to a univariate joint model with lung function. Individualized dynamic predictions from joint modeling could enhance physician monitoring of CF disease progression by providing PE risk assessment over a patient’s clinical course.


2017 ◽  
Vol 27 (10) ◽  
pp. 2946-2963 ◽  
Author(s):  
Xiaosun Lu ◽  
Yangxin Huang ◽  
Jiaqing Chen ◽  
Rong Zhou ◽  
Shuli Yu ◽  
...  

In medical studies, heterogeneous- and skewed-longitudinal data with mis-measured covariates are often observed together with a clinically important binary outcome. A finite mixture of joint models is currently used to fit heterogeneous-longitudinal data and binary outcome, in which these two parts are connected by the individual latent class membership. The skew distributions, such as skew-normal and skew-t, have shown beneficial in dealing with asymmetric data in various applications in literature. However, there has been relatively few studies concerning joint modeling of heterogeneous- and skewed-longitudinal data and a binary outcome. In this article, we propose a joint model in which a flexible finite mixture of nonlinear mixed-effects models with skew distributions is connected with binary logistic model by a latent class membership indicator. Simulation studies are conducted to assess the performance of the proposed models and method, and a real example from an AIDS clinical trial study illustrates the methodology by modeling the viral dynamics to compare potential models with different distribution specifications; the analysis results are reported.


Sign in / Sign up

Export Citation Format

Share Document