scholarly journals Efficient three-node finite shell element for linear and geometrically nonlinear analyses of piezoelectric laminated structures

2017 ◽  
Vol 29 (3) ◽  
pp. 345-357 ◽  
Author(s):  
Gil Rama ◽  
Dragan Marinković ◽  
Manfred Zehn
Author(s):  
Professor Mohammad Rezaiee-Pajand ◽  
Amir R. Masoodi ◽  
E. Arabi

In this paper, an improved flat triangular shell element is proposed. This element has three nodes, and in each node, six degrees of freedom are considered. Since there are three rotational degrees of freedom at each node, the drilling effect can be incorporated in authors' formulation. A new procedure is also suggested for updating the director vectors about which the rotational degrees of freedom are defined. In order to study large displacements and rotations, Total Lagrangian principles are employed. In addition, updating the rotational degrees of freedom is implemented using enriched updated director vectors, which are formulated based on the finite rotation method. On the other hand, small strains are considered in this formulation. By utilizing MITC method, shear and membrane locking is mitigated from new element. To examine the performance, the element passes three basic tests, including isotropy, and patch test. Moreover, a convergence study is also implemented to show the elemental behavior. Several popular benchmarks are considered to illustrate the accuracy and capability of the suggested element in geometrically nonlinear analyses.    


PAMM ◽  
2008 ◽  
Vol 8 (1) ◽  
pp. 10337-10338
Author(s):  
Katrin Schulz ◽  
Sven Klinkel ◽  
Werner Wagner

Author(s):  
P. V. Katariya ◽  
S. K. Panda

In this article, stability behavior of laminated composite curved panels under thermo-mechanical loading is analyzed. A generalized panel model is developed based on higher order shear deformation theory by taking the nonlinearity in Green-Lagrange sense for thermal distortion. The critical buckling load (mechanical/thermal) parameters are obtained by using the developed finite element model validated for both ANSYS and homemade computer code. The model has been discretized in ANSYS using an eight-noded serendipity shell element (shell281) and a nine noded isoparametric element for the computer code. The convergence test has been carried out and the results are compared with those available published literature. In this analysis, a uniform temperature distribution through the thickness is taken and the material properties for the composites are assumed to be temperature invariant. We note substantial effect of different parameters (support conditions, number of layers, thickness ratio and modular ratio) on thermo-mechanical stability behavior of laminated structures.


Sign in / Sign up

Export Citation Format

Share Document