stability behavior
Recently Published Documents


TOTAL DOCUMENTS

285
(FIVE YEARS 60)

H-INDEX

25
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Kajetan Koperwas ◽  
Filip Kaśkosz ◽  
Frederic Affouard ◽  
Andrzej Grzybowski ◽  
Marian Paluch

Abstract In this paper, we examine the crystallization tendency for two quasi-real systems, which differ exclusively in the dipole moment's value. The main advantage of the studied system is the fact that despite that their structures are entirely identical, they exhibit different physical properties. Hence, the results obtained for one of the proposed model systems cannot be scaled to reproduce the results for another corresponding system, as it can be done for simple model systems, where structural differences are modeled by the different parameters of the intermolecular interactions. Our results show that both examined systems exhibit similar stability behavior below the melting temperature. This finding is contrary to the classical nucleation theory predictions, which differ significantly for them. On the basis of the performed studies, we suggest that a kinetic aspect of the classical nucleation theory seems to be a reason for reported discrepancies.


Author(s):  
Abdelmalek Khebli ◽  
Salah Aguib ◽  
Chikh Noureddine ◽  
Kobzili Lallia ◽  
Meloussi Mounir

2021 ◽  
pp. 1-18
Author(s):  
Zhongyuan Wo ◽  
Evgueni Filipov

Abstract Thin-walled corrugated tubes that have a bending multi-stability, such as the bendy straw, allow for variable orientations over the tube length. Compared to the long history of corrugated tubes in practical applications, the mechanics of the bending stability and how it is affected by the cross-sections and other geometric parameters remain unknown. To explore the geometry-driven bending stabilities, we used several tools, including a reduced-order simulation package, a simplified linkage model, and physical prototypes. We found the bending stability of a circular two-unit corrugated tube is dependent on the longitudinal geometry and the stiffness of the crease lines that connect separate frusta. Thinner shells, steeper cones, and weaker creases are required to achieve bending bi-stability. We then explored how the bending stability changes as the cross-section becomes elongated or distorted with concavity. We found the bending bi-stability is favored by deep and convex cross-sections, while wider cross-sections with a large concavity remain mono-stable. The different geometries influence the amounts of stretching and bending energy associated with bending the tube. The stretching energy has a bi-stable profile and can allow for a stable bent configuration, but it is counteracted by the bending energy which increases monotonically. The findings from this work can enable informed design of corrugated tube systems with desired bending stability behavior.


2021 ◽  
pp. 1-43
Author(s):  
PANKAJ KUMAR TIWARI ◽  
MAITRI VERMA ◽  
SOUMITRA PAL ◽  
YUN KANG ◽  
ARVIND KUMAR MISRA

Fear of predation may assert privilege to prey species by restricting their exposure to potential predators, meanwhile it can also impose costs by constraining the exploration of optimal resources. A predator–prey model with the effect of fear, refuge, and hunting cooperation has been investigated in this paper. The system’s equilibria are obtained and their local stability behavior is discussed. The existence of Hopf-bifurcation is analytically shown by taking refuge as a bifurcation parameter. There are many ecological factors which are not instantaneous processes, and so, to make the system more realistic, we incorporate three discrete time delays: in the effect of fear, refuge and hunting cooperation, and analyze the delayed system for stability and bifurcation. Moreover, for environmental fluctuations, we further modify the delayed system by incorporating seasonality in the fear, refuge and cooperation. We have analyzed the seasonally forced delayed system for the existence of a positive periodic solution. In the support of analytical results, some numerical simulations are carried out. Sensitivity analysis is used to identify parameters having crucial impacts on the ecological balance of predator–prey interactions. We find that the rate of predation, fear, and hunting cooperation destabilizes the system, whereas prey refuge stabilizes the system. Time delay in the cooperation behavior generates irregular oscillations whereas delay in refuge stabilizes an otherwise unstable system. Seasonal variations in the level of fear and refuge generate higher periodic solutions and bursting patterns, respectively, which can be replaced by simple 1-periodic solution if the cooperation and fear are also allowed to vary with time in the former and latter situations. Higher periodicity and bursting patterns are also observed due to synergistic effects of delay and seasonality. Our results indicate that the combined effects of fear, refuge and hunting cooperation play a major role in maintaining a healthy ecological environment.


Structures ◽  
2021 ◽  
Vol 34 ◽  
pp. 3222-3237
Author(s):  
S. Aguib ◽  
N. Chikh ◽  
L. Kobzili ◽  
T. Djedid ◽  
A. Nour ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Chao Guo ◽  
Zhengran Lu

The instability damage modes of rectangle concrete-filled steel tube (RCFST) columns that are subjected to eccentric compression can be divided into two types based on the modified Jezek analytical procedure, namely, the eccentricity ratio (γ) and the slenderness ratio (λ) coupling effect. The RCFST columns have unilateral compression yield failure mode when γ is small. However, it has compressive and tensile mode on both sides when the value of γ is large. In this work, parametric analyses were performed to test 32 RCFST long columns by varying γ with different λ combinations. From the analysis, it was found that the results of the theoretical analysis of the load-tension strain (P-ε) responses and the instability modes of the RCFST long columns are similar to the experimental results. Further, the proposed analytical method aids in better understanding the effects of γ and λ coupling on the stability behavior of the RCFST columns.


Sign in / Sign up

Export Citation Format

Share Document