Parameter estimation of a rate-dependent damage constitutive model for damage-tolerant brittle composites by Self-OPTIM analyses

2012 ◽  
Vol 22 (5) ◽  
pp. 699-718 ◽  
Author(s):  
Shen Shang ◽  
Gun Jin Yun ◽  
Bong-Rae Kim ◽  
Haeng-Ki Lee
2021 ◽  
Vol 14 (15) ◽  
Author(s):  
Zhongzhong Liu ◽  
Hanpeng Wang ◽  
Su Wang ◽  
Yang Xue ◽  
Chong Zhang

2020 ◽  
Vol 37 ◽  
pp. 118-125
Author(s):  
Weihua Zhou ◽  
Changqing Fang ◽  
Huifeng Tan ◽  
Huiyu Sun

Abstract Uncured rubber possesses remarkable hyperelastic and viscoelastic properties while it undergoes large deformation; therefore, it has wide application prospects and attracts great research interests from academia and industry. In this paper, a nonlinear constitutive model with two parallel networks is developed to describe the mechanical response of uncured rubber. The constitutive model is incorporated with the Eying model to describe the hysteresis phenomenon and viscous flow criterion, and the hyperelastic properties under large deformation are captured by a non-Gaussian chain molecular network model. Based on the model, the mechanical behaviors of hyperelasticity, viscoelasticity and hysteresis under different strain rates are investigated. Furthermore, the constitutive model is employed to estimate uniaxial tensile, cyclic loading–unloading and multistep tensile relaxation mechanical behaviors of uncured rubber, and the prediction results show good agreement with the test data. The nonlinear mechanical constitutive model provides an efficient method for predicting the mechanical response of uncured rubber materials.


2022 ◽  
Vol 320 ◽  
pp. 126223
Author(s):  
Jianyong Han ◽  
Dong Liu ◽  
Yongping Guan ◽  
Yang Chen ◽  
Tianliang Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document