Joint optimization of product family design and supplier selection under multinomial logit consumer choice rule

2012 ◽  
Vol 20 (4) ◽  
pp. 335-347 ◽  
Author(s):  
Yan Cao ◽  
Xing Gang Luo ◽  
C K Kwong ◽  
Jiafu Fu Tang ◽  
Wei Zhou
2011 ◽  
Vol 49 (14) ◽  
pp. 4195-4222 ◽  
Author(s):  
X.G. Luo ◽  
C.K. Kwong ◽  
J.F. Tang ◽  
S.F. Deng ◽  
J. Gong

2017 ◽  
Vol 30 (3) ◽  
pp. 1387-1405 ◽  
Author(s):  
Gang Du ◽  
Yi Xia ◽  
Roger J. Jiao ◽  
Xiaojie Liu

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Yun Huang ◽  
Kaizhou Gao ◽  
Kai Wang ◽  
Haili Lv ◽  
Fan Gao

PurposeThe purpose of this paper is to adopt a three-stage cloud-based management system for optimizing greenhouse gases (GHG) emission and marketing decisions with supplier selection and product family design in a multi-level supply chain with multiple suppliers, one single manufacturer and multiple retailers.Design/methodology/approachThe manufacturer purchases optional components of a certain functionality from his alternative suppliers and customizes a set of platform products for retailers in different independent market segments. To tackle the studied problem, a hierarchical analytical target cascading (ATC) model is proposed, Jaya algorithm is applied and supplier selection and product family design are implemented in its encoding procedure.FindingsA case study is used to verify the effectiveness of the ATC model in solving the optimization problem and the corresponding algorithm. It has shown that the ATC model can not only obtain close optimization results as a central optimization method but also maintain the autonomous decision rights of different supply chain members.Originality/valueThis paper first develops a three-stage cloud-based management system to optimize GHG emission, marketing decisions, supplier selection and product family design in a multi-level supply chain. Then, the ATC model is proposed to obtain the close optimization results as central optimization method and also maintain the autonomous decision rights of different supply chain members.


2021 ◽  
Vol 13 (19) ◽  
pp. 10764
Author(s):  
Qi Wang ◽  
Peipei Qi ◽  
Shipei Li

With the increase in pollution and people’s awareness of the environment, reducing greenhouse gas (GHG) emissions from products has attracted more and more attention. Companies and researchers are seeking appropriate methods to reduce the GHG emissions of products. Currently, product family design is widely used for meeting the diverse needs of customers. In order to reduce the GHG emission of products, some methods for low-carbon product family design have been presented in recent years. However, in the existing research, the related GHG emission data of a product family are given as crisp values, which cannot assess GHG emissions accurately. In addition, the procurement planning of components has not been fully concerned, and the supplier selection has only been considered. To this end, in this study, a concurrence optimization model was developed for the low-carbon product family design and the procurement plan of components under uncertainty. In the model, the relevant GHG emissions were considered as the uncertain number rather than the crisp value, and the uncertain GHG emissions model of the product family was established. Meanwhile, the order allocation of the supplier was considered as the decision variable in the model. To solve the uncertain optimization problem, a genetic algorithm was developed. Finally, a case study was performed to illustrate the effectiveness of the proposed approach. The results showed that the proposed model can help decision-makers to simultaneously determine the configuration of product variants, the procurement strategy of components, and the price strategies of product variants based on the objective of maximizing profit and minimizing GHG emission under uncertainty. Moreover, the concurrent optimization of low-carbon product family design and order allocation can bring the company greater profit and lower GHG emissions than just considering supplier selection in low-carbon product family design.


2012 ◽  
Vol 134 (11) ◽  
Author(s):  
Seung Ki Moon ◽  
Daniel A. McAdams

Companies that generate a variety of products and services are creating, and increasing research on, mass-customized products in order to satisfy customers’ specific needs. Currently, the majority of effort is focused on consumers who are without disabilities. The research presented here is motivated by the need to provide a basis of product design methods for users with some disability—often called universal design (UD). Product family design is a way to achieve cost-effective mass customization by allowing highly differentiated products serving distinct market segments to be developed from a common platform. By extending concepts from product family design and mass customization to universal design, we propose a method for developing and evaluating a universal product family within uncertain market environments. We will model design strategies for a universal product family as a market economy where product family platform configurations are generated through market segments based on a product platform and customers’ preferences. A coalitional game is employed to evaluate which design strategies provide more benefit when included in the platform based on the marginal profit contribution of each strategy. To demonstrate an implementation of the proposed method, we use a case study involving a family of light-duty trucks.


Sign in / Sign up

Export Citation Format

Share Document