Balancing of parallel U-shaped assembly lines with a heuristic algorithm based on bidirectional priority values

2021 ◽  
pp. 1063293X2110655
Author(s):  
Yuling Jiao ◽  
Xue Deng ◽  
Mingjuan Li ◽  
Xiaocui Xing ◽  
Binjie Xu

Aiming at improving assembly line efficiency and flexibility, a balancing method of parallel U-shaped assembly line system is proposed. Based on the improved product priority diagram, the bidirectional priority value formula is obtained. Then, assembly lines are partitioned into z-q partitions and workstations are defined. After that, the mathematical model of the parallel U-shaped assembly line balancing problem is established. A heuristic algorithm based on bidirectional priority values is used to solve explanatory examples and test examples. It can be seen from the results and the effect indicators of the assembly line balancing problem that the heuristic algorithm is suitable for large balancing problems. The proposed method has higher calculation accuracy and shorter calculation time. The balancing effect of the parallel U-shaped assembly line is better than that of single U-shaped assembly line, which verifies the superiority of the parallel U-type assembly line and effectiveness of the proposed method. It provides a theoretical and practical reference for parallel U-type assembly line balancing problem.

Author(s):  
Ashish Yadav ◽  

Multi-manned assembly lines are generally used to produce large-sized volume products such as cars and trucks. This article addresses the multi-manned two sided assembly line balancing problem with the objectives sharing tool between workstations. This paper presents a mathematical model and a Lingo -16 solvers based exact algorithm for multi-manned two-sided assembly line system configuration with tool sharing between adjacent workstations for companies that need intelligent solutions to satisfy customized demands on time with existing resources. The results obtained indicate that tool shared between parallel stations of two or more parallel lines beneficial for assembly line to minimize workstations, idle time and reduce tool cost.


2015 ◽  
Vol 35 (1) ◽  
pp. 137-142 ◽  
Author(s):  
Hamid Yilmaz ◽  
Mustafa Yilmaz

Purpose – The purpose of this paper is balancing multi-manned assembly lines with load-balancing constraints in addition to conventional ones Most research works about the multi-manned assembly line balancing problems are focused on the conventional industrial measures that minimize total number of workers, number of multi-manned workstations or both. Design/methodology/approach – This paper provides a remedial constraint for the model to balance task load density for each worker in workstations. Findings – Comparisons between the proposed mathematical model and the existing multi-manned mathematical model show a quite promising better task load density performance for the proposed approach. Originality/value – In this paper, a mathematical model that combines the minimization of multi-manned stations, worker numbers and difference of task load density of workers is proposed for the first time.


Author(s):  
Jie Zhang ◽  
Bo Xin ◽  
Pan Wang

In order to improve the balance and load equilibrium of aircraft assembly lines, and to enhance the management of on-site resources, a Type-E balancing method was proposed based on the mobile operation of assembly personnel in the aircraft assembly line. This method was aimed to minimize the smoothness index of the overall assembly line and each assembly station, and also to minimize manpower costs. First, a model of personnel flow and an assembly line balancing model were constructed based on the characteristics of aircraft assembly lines. Next, an Accelerated Binary Particle Swarm Optimization (ABPSO) based on improved sig function was designed in order to improve the original stability and convergence of the standard binary particle swarm algorithm. Finally, the validity of the method was verified with a real fuselage assembly line and the results show the effectiveness.


Sign in / Sign up

Export Citation Format

Share Document