scholarly journals Comparison of Whole-Body Vibration Exposures When Operating a City Bus with an Active, Passive and Static Suspension Bus Seat

Author(s):  
Peter W. Johnson ◽  
Jennifer Ibbotson-Brown ◽  
Serf Menocal ◽  
Jim Parison

Municipal bus drivers have a high rate of work-related musculoskeletal disorders (WMDSs) and Whole Body Vibration (WBV) has been shown to be a risk factor associated with WMSDs. Recently, active suspension seats, which cut WBV exposures in half relative to the current, industry-standard air suspension seats, have become commercially available for use in buses. This study compared WBV exposures while bus drivers operated a municipal bus over a standardized test route using three different types of seats: 1) an active (electromechanical) suspension bus seat, 2) a passive (air) suspension bus seat, and 3) a static (suspension-less) bus seat. Similar to their performance in semi-trucks, the active suspension seat reduced bus driver WBV exposures between 35% to 61% relative to the passive suspension and static seats. Based on these preliminary results, the active suspension bus seat appears to have the potential to substantially reduce a bus driver’s exposure to WBV.

Author(s):  
Hugh W Davies ◽  
Fangfang Wang ◽  
Bronson B Du ◽  
Rick Viventi ◽  
Peter W Johnson

Abstract Trucking is a key industry in Canada with around 180 000 professional drivers. As an industry it has a disproportionately high injury claim rate, particularly for back injuries. Whole-body vibration (WBV) can contribute to the onset and development of low back disorders, and is a well-documented exposure among driving professions. A widely adopted WBV mitigation measure focuses on hydraulic and/or pneumatic passive suspension systems both in the driver’s seat and underneath the vehicle cab. Passive suspension ‘air-ride’ seats are the current industry standard but new technologies such as the electromagnetic active vibration cancelling (EAVC) seats offer potentially substantial improvements in WBV reduction. In this paper, we evaluate and compare four commonly used truck seats (three air-ride, one EAVC) for their vibration damping characteristics and WBV exposure attenuation in on- and off-road conditions. We recruited 24 professional truck drivers who drove 280 km (mixed on-road and off-road) in ore-haul trucks under four different seating conditions. Following the ISO 2631-1 WBV standard, vibration measurements were made on the cab floor and seat pad, and 8-h average weighted vibration (A(8)) and 8-h vibration dose values (VDV(8)) were calculated, as well as the Seat Effective Amplitude Transmissibility (SEAT), and daily vibration action limits (DVALs). These measures were compared between seat types, as well as road conditions. The EAVC seat gave best performance for both A(8) (0.27 m s−2) and VDV(8) (6.6 m s−1.75). The EVAC seat had the lowest SEAT tested (36.2%) and the longest DVAL. However, among the three passive air-suspension seats, two showed significantly reduced A(8) (0.43 and 0.44 m s−2) and VDV(8) (9.1 and 9.3 m s−1.75) exposures relative to the third passive air-suspension seats [A(8) (0.54 m s−2) and VDV(8) (11.1 m s−1.75)]. These differences in exposures among the three passive air-suspension seats resulted in varying DVAL times, with the worst performing seat reaching the DVAL after only 6.3 h of driving. There was also a seat by road type interaction; there were performance differences between the passive air-suspension seats on-road, but not off-road. The observed reduction of the WBV exposures measured from the EAVC seat was consistent with previous results. But we showed that there can also be substantive differences among seats that are the current industry standard. These differences were more evident on-road than off-road, which suggests that more work needs to be done to understand seat performance characteristics, and in matching the correct seat technology to the driving task. We demonstrated that WBV exposures in current industry conditions may exceed health-based exposure limits; this has policy relevance because WBV exposures are linked to prevalent and costly adverse health conditions in a working population that is ageing. Increased WBV measurement collection is recommended to ensure the anticipated exposure attenuations are achieved when seats are relied upon as an engineered control against WBV.


Spine ◽  
1992 ◽  
Vol 17 (9) ◽  
pp. 1048-1059 ◽  
Author(s):  
Massimo Bovenzi ◽  
Antonella Zadini

Author(s):  
Kiana Kia ◽  
Peter W Johnson ◽  
Jeong Ho Kim

This study compared whole body vibration (WBV), muscle activity and non-driving task performance between different seat suspension settings in a simulated autonomous passenger car environment. To simulate autonomous vehicle environment, field-measured vibration profiles were recreated on a large-scale 6-degree-of-freedom motion platform. In a repeated-measures laboratory experiment, we measured whole body vibration, muscle activity (neck, shoulder and low back), participants non-driving task performance while participants performed non-driving tasks (pointing task with a laptop trackpad, keyboard typing, web-browsing, and reading) on three different suspension seats mounted on the motion platform: vertical (z-axis) electromagnetic active suspension, multi-axial (lateral (y-axis) and vertical (z-axis)) electromagnetic active suspension, and no suspension (industry standard suspension-less seat for passenger cars). The average weighted vibration [A(8)] and vibration dose value [VDV(8)] showed that the seat measured vibration on both the vertical [A(8) = 0.29 m/s2 and VDV(8) = 10.70 m/s1.75] and multi-axial suspension seats [A(8) = 0.29 m/s2 and VDV(8) = 10.22m/s1.75] were lower than no-suspension seat vibration [A(8) = 0.36 m/s2 and VDV(8) = 12.84 m/s1.75]. Despite the significant differences in WBV between the different suspensions there were no significant differences across three different suspension seats in typing performance (typing speed and accuracy: p’s > 0.83), pointing task performance (movement time and accuracy: p’s > 0.87), web-browsing (number of questions and webpages read: p = 0.42), and reading (number of words read: p = 0.30). The muscle activity in low back (erector spinae) and shoulder (trapezius) muscles also did not show any significant differences (p’s > 0.22). These laboratory study findings indicated that despite the significant reduction in WBV, neither vertical nor multi-axial active suspension seats improve non-driving task performance as compared to the no-suspension seat.


2012 ◽  
Author(s):  
Ornwipa Thamsuwan ◽  
Ryan P. Blood ◽  
Charlotte Lewis ◽  
Patrik W. Rynell ◽  
Peter W. Johnson

Author(s):  
Olivier Munyaneza ◽  
Jung Woo Sohn

This paper describes the design, simulation, and performance evaluation of hybrid MR damper on quarter bus semi-active seat suspension coupled with human biodynamic model. Also, the whole body vibration (WBV) exposures were evaluated based on the international standard ISO 2631 (1997), and its parameters were used to measure the level of discomfort for bus drivers. The hybrid MR damper was proposed to enhance the damping force within low current supplied and achieve a fail-soft capability in case of electrical failure. The characteristics of the proposed hybrid MR damper were compared to the conventional MR damper by considering the same size, materials, and current input. The designed damper was incorporated to seat suspension system coupled with biodynamic lumped model, and the governing equations of motion of the full model were derived. Skyhook controller was used to control the amount of current to be supplied to hybrid MR damper. The controlled semi-active hybrid MR and conventional MR seat suspension are compared to uncontrolled system for two types of road excitation. The simulated results show that the driver seat comfort was improved by the skyhook controller than the uncontrolled case. The evaluated WBV showed that the hybrid MR damper can improve the driver life from fairly uncomfortable to little discomfort.


2010 ◽  
Vol 329 (1) ◽  
pp. 109-120 ◽  
Author(s):  
R.P. Blood ◽  
J.D. Ploger ◽  
M.G. Yost ◽  
R.P. Ching ◽  
P.W. Johnson

Sign in / Sign up

Export Citation Format

Share Document