air suspension
Recently Published Documents


TOTAL DOCUMENTS

394
(FIVE YEARS 112)

H-INDEX

17
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Abir Chakravorty

Development of desalination technologies has been identified as vital to fulfilling future water demand. Directional solvent extraction is one of the promising membrane-less seawater desalination method. Membrane based desalination technologies incur a higher cost and are subjected to fouling after certain period of time of operation and needs regular maintenance and monitoring. It is believed that, overcoming these drawbacks is possible by working in the millimeter scale through the incorporation of pulsatile flow and air damper. This work presents a theoretical approach designed for a certain nominal length of an air damper, placed on the top of the extraction column, with the flow in the desalination unit being semi pulsatile combined with secondary pulsation generated due to air suspension during solvent extraction applied for desalination operation. Henceforth a theoretical approach based on the above stated parameters, it is found theoretically that with increase in flow pulsation amplitude and frequency the extracted salt concentration in solvent increases. The application of infra red radiation in preheating section with the help of a infrared heating device is the crucial part of DSE process, cooling is planned to achieve via a heat exchanger or atmospheric cooling. The total exergy and energy calculations will be conducted to see the energy requirement for the process. It is planned to calculate the salt separation efficiency of sea water (on the basis of WHO guidelines) to fresh water, alongwith flow rate and processing time.


Actuators ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 12
Author(s):  
Dang Viet Ha ◽  
Vu Van Tan ◽  
Vu Thanh Niem ◽  
Olivier Sename

The air suspension system has become more and more popular in heavy vehicles and buses to improve ride comfort and road holding. This paper focuses on the evaluation of the dynamic load reduction at all axles of a semi-trailer with an air suspension system, in comparison with the one using a leaf spring suspension system on variable speed and road types. First, a full vertical dynamic model is proposed for a tractor semi-trailer (full model) with two types of suspension systems (leaf spring and air spring) for three axles at the semi-trailer, while the tractor’s axles use leaf spring suspension systems. The air suspension systems are built based on the GENSYS model; meanwhile, the remaining structural parameters are considered equally. The full model has been validated by experimental results, and closely follows the dynamical characteristics of the real tractor semi-trailer, with the percent error of the highest value being 6.23% and Pearson correlation coefficient being higher than 0.8, corresponding to different speeds. The survey results showed that the semi-trailer with the air suspension system can reduce the dynamic load of the entire field of speed from 20 to 100 km/h, given random road types from A to F according to the ISO 8608:2016 standard. The dynamic load coefficient (DLC) with the semi-trailer using the air spring suspension system can be reduced on average from 14.8% to 29.3%, in comparison with the semi-trailer using the leaf spring suspension system.


Author(s):  
O. M. Dyakonov ◽  
V. Yu. Sereda

The process of inorganic and organic components temperature transformation of metal waste into solid and gaseous products in a continuous hot briquetting muffle furnace has been studied. The composition of the hydrocarbon atmosphere formed in the muffle under conditions of limited access to the oxidizer has been determined. It is shown that the thermal destruction of the coolant oil phase proceeds according to a complex mechanism of consecutive reactions, including polycondensation, polymerization, and deep compaction with a constant decrease in the hydrogen content and ends with the formation of a coke‑like carbon residue on the surface of metal particles and an air suspension of finely dispersed carbon particles (smoke). When it is heated to hot briquetting temperatures of 750–850 °C, chemically active dispersions of ferrous metals are protected from oxidation first by a hydrocarbon gas with a density of 9.0–13.5 kg/m3, then by a pyrocarbon coating with a thickness of 0.1–0.3 mm up to the completion of the processes of pressing and cooling the briquette.


Author(s):  
Jingyue Wang ◽  
Kun Lv ◽  
Haotian Wang ◽  
Sheng Guo ◽  
Junnian wang

To improve the ride comfort of wheeled armored vehicles, air springs are used. To describe the vehicle motion more accurately, a nine-degree-of-freedom air suspension system for the whole vehicle was established, and its equations of motion were derived. Through theoretical analysis of the stiffness characteristics and forces on the air springs, the nonlinear restoring force was obtained as a cubic polynomial of the air spring displacement. The simulation results obtained by fitting the polynomial and radial basis function curves with MATLAB/Simulink software are consistent with the actual test results, thus verifying the correctness of the nonlinear air spring polynomial model. Finally, a fuzzy fractional order PIλDμ controller is designed and simulated for the vehicle-seat-body model in terms of wheel dynamic load, suspension dynamic deflection, body acceleration, and other indicators. The simulation results show that the fuzzy fractional order PIλDμ Proportion Integral Differential (PID) control strategy has better overall performance than the PID control strategy, fuzzy control strategy, and fuzzy PID control strategy.


2021 ◽  
Vol 11 (22) ◽  
pp. 10925
Author(s):  
Gang Li ◽  
Zhiyong Ruan ◽  
Ruiheng Gu ◽  
Guoliang Hu

In order to reduce vehicle vibration during driving conditions, a fuzzy sliding mode control strategy (FSMC) for semi-active air suspension based on the magnetorheological (MR) damper is proposed. The MR damper used in the semi-active air suspension system was tested and analyzed. Based on the experimental data, the genetic algorithm was used to identify the parameters of the improved hyperbolic tangent model, which was derived for the MR damper. At the same time, an adaptive neuro fuzzy inference system (ANFIS) was used to build the reverse model of the MR damper. The model of a quarter vehicle semi-active air suspension system equipped with a MR damper was established. Aiming at the uncertainty of the air suspension system, fuzzy control was used to adjust the boundary layer of the sliding mode control, which can effectively suppress the influence of chattering on the control accuracy and ensure system stability. Taking random road excitation and impact road excitation as the input signal, the simulation analysis of passive air suspension, semi-active air suspension based on SMC and FSMC was carried out, respectively. The results show that the semi-active air suspension based on FSMC has better vibration attenuating performance and ride comfort.


Sensors ◽  
2021 ◽  
Vol 21 (20) ◽  
pp. 6753
Author(s):  
Wei Qiu ◽  
Xinyue Yao ◽  
Yue Zhu ◽  
Hao Sun ◽  
Liangfu Zhou ◽  
...  

Medium and small-scale high-clearance sprayers are widely applied in medium and small-scale farms. Owing to power and load limitations, it is difficult to manage the complex system for suppressing spray boom vibration. This study was conducted to design a spray boom-air suspension system suitable for medium and small-size high-clearance sprayers by combining spray boom vibration suppression and the characteristics of air spring charging/discharging. Thus, this study aims to address the non-homogeneous distribution of spray triggered by the spray boom vibrations in medium and small high-clearance sprayers. The effects of different elastic elements on the vibration suppression effect of the spray boom were compared. According to the bench test, the dynamic response results of the spray boom under transient and sinusoidal excitations indicate that air spring is more conducive to vibration suppression than coil spring. The results obtained from the field experiments indicate that under the low solid soil condition, the spray boom air suspension should match a small additional air chamber with a volume of approximately 0.6 L, and the damping coefficient of the damper should be approximately 1792 N·s/m. In the case of the high firm soil, the spray boom air suspension should match a large additional air chamber with a volume of approximately 3.6 L, while the damping coefficient of the damper should be set to approximately 1316 N·s/m. The soil with low moisture content and high firmness are unfavorable to the vibration suppression of the spray boom. This study provides a reference for enhancing the vibration suppression of the spray boom-air suspension and improving the spray uniformity of the sprayer.


2021 ◽  
Author(s):  
Utz Spaeth ◽  
Heiko Fechtner ◽  
Michele Weisbach ◽  
Alexander Popp ◽  
Benedikt Schmuelling

2021 ◽  
pp. 32-38
Author(s):  
Н.Л. Полетаев ◽  
Д.В. Ушаков ◽  
А.А. Абашкин

Выполнена аналитическая оценка отношения глубины прогрева газовзвеси излучением продуктов горения S к длине свободного пробега излучения в газовзвеси L. Использована одномерная модель стационарного распределения температуры в потоке взвешенных в воздухе монодисперсных инертных частиц, движущихся на равномерно нагретую абсолютно черную поверхность, имитирующую фронт пламени. Учитывается отражение и переизлучение тепловой энергии частицами. S / L >> 1 при низкой степени черноты и/или высокой конечной температуре частиц. It is accepted that the depth of heating of the gas suspension by the radiation of combustion products SR is equal to the length LR of the free path of radiation in the gas suspension: SR ≈ LR. Numerical simulation of gas-air mixture combustion with the addition of inert particles, taking into account the re-emission of heat by heated particles of fresh suspension, shows the possibility of realizing the ratio SR >> LR (Ivanov M.F. et al, 2015). In this work, an analytical estimate of the SR/LR ratio is carried out within the framework of one-dimensional modeling of the temperature distribution in the flow of initially cold monodisperse inert particles suspended in air, moving to a uniformly heated absolutely black surface, permeable to air suspension and simulating a flame front. The following assumptions are used. The solution is stationary in the coordinate system associated with the emitting surface; radiation consists of two oppositely directed streams of electromagnetic energy; the interaction of particles and radiation is described in the approximation of geometric optics and takes into account both the processes of absorption and emission of thermal energy, and the process of reflection of radiation; the temperature inside the particle is the same. In contrast to the previously considered (Poletaev N.L., 2021) the simplified problem of the motion of particles in a vacuum or in the presence of a gas phase heated by particles but not experiencing thermal expansion, this work took into account both the presence of a gas phase heated by particles and expansion of the gas phase. The latter causes the acceleration and expansion of the air suspension as it approaches the radiating surface. The difference in the local values of temperatures and phase motion velocities of the air suspension was neglected. It is shown that the quasi-linear (in the above-mentioned coordinate system) temperature distribution function in the air suspension obtained in this work is qualitatively different from the quasi-exponential temperature distribution function obtained earlier by solving a simplified problem. At the same time, the ratio of the heating depth of the air suspension by thermal radiation and the free path of radiation in the layer of air suspension adjacent to the radiating plane turned out to be similar to that obtained for the simplified solution. Namely, SR/LR >> 1 at a low integral degree of emissivity of the particle material and / or at a high final temperature of the particles, comparable to the temperature of the emitting surface.


Sign in / Sign up

Export Citation Format

Share Document