scholarly journals A Continuous Approach to the Aeroelastic Stability of Suspended Cables in 1 : 2 Internal Resonance

2008 ◽  
Vol 14 (1-2) ◽  
pp. 135-157 ◽  
Author(s):  
A. Luongo ◽  
G. Piccardo
2002 ◽  
Vol 8 (3) ◽  
pp. 337-387 ◽  
Author(s):  
Ali H. Nayfeh ◽  
Haider N. Arafat ◽  
Char-Ming Chin ◽  
Walter Lacarbonara

We investigate the nonlinear nonplanar responses of suspended cables to external excitations. The equations of motion governing such systems contain quadratic and cubic nonlinearities, which may result in two-to-one and one-to-one internal resonances. The sag-to-span ratio of the cable considered is such that the natural frequency of the first symmetric in-plane mode is at first crossover. Hence, the first symmetric in-plane mode is involved in a one-to-one internal resonance with the first antisymmetric in-plane and out-of-plane modes and, simultaneously, in a two-to-one internal resonance with the first symmetric out-of-plane mode. Under these resonance conditions, we analyze the response when the first symmetric in-plane mode is harmonically excited at primary resonance. First, we express the two governing equations of motion as four first-order (i.e., state-space formulation) partial-differential equations. Then, we directly apply the methods of multiple scales and reconstitution to determine a second-order uniform asymptotic expansion of the solution, including the modulation equations governing the dynamics of the phases and amplitudes of the interacting modes. Then, we investigate the behavior of the equilibrium and dynamic solutions as the forcing amplitude and resonance detunings are slowly varied and determine the bifurcations they may undergo.


2001 ◽  
Vol 01 (02) ◽  
pp. 207-233 ◽  
Author(s):  
L. MARTINELLI ◽  
F. PEROTTI

In this paper, a numerical procedure is presented for the dynamic analysis of elastic cables subjected to turbulent wind excitation in quasi-steady conditions. The proposed methodology, which takes geometrical and aerodynamic non-linearities into account, is based on artificial simulation of turbulence, on finite-element modeling of the cables and on a step-by-step implicit procedure for the integration of the dynamic equilibrium equations. As a first application, the dynamic behaviour of a cable in 1 : 2 internal resonance conditions is studied, focusing on some aspects of the influence of wind turbulence on galloping oscillations.


2006 ◽  
Vol 11 (3) ◽  
pp. 293-318 ◽  
Author(s):  
M. Zribi ◽  
N. B. Almutairi ◽  
M. Abdel-Rohman

The flexibility and low damping of the long span suspended cables in suspension bridges makes them prone to vibrations due to wind and moving loads which affect the dynamic responses of the suspended cables and the bridge deck. This paper investigates the control of vibrations of a suspension bridge due to a vertical load moving on the bridge deck with a constant speed. A vertical cable between the bridge deck and the suspended cables is used to install a hydraulic actuator able to generate an active control force on the bridge deck. Two control schemes are proposed to generate the control force needed to reduce the vertical vibrations in the suspended cables and in the bridge deck. The proposed controllers, whose design is based on Lyapunov theory, guarantee the asymptotic stability of the system. The MATLAB software is used to simulate the performance of the controlled system. The simulation results indicate that the proposed controllers work well. In addition, the performance of the system with the proposed controllers is compared to the performance of the system controlled with a velocity feedback controller.


2016 ◽  
Vol 10 (3) ◽  
pp. 147 ◽  
Author(s):  
Rodrigo Tumolin Rocha ◽  
Jose Manoel Balthazar ◽  
Angelo Marcelo Tusset ◽  
Vinicius Piccirillo ◽  
Jorge Luis Palacios Felix

Sign in / Sign up

Export Citation Format

Share Document