space formulation
Recently Published Documents


TOTAL DOCUMENTS

426
(FIVE YEARS 64)

H-INDEX

36
(FIVE YEARS 3)

Author(s):  
Liusong Yang ◽  
Shifeng Xue ◽  
Xingang Zhang ◽  
Wenli Yao

In the simulation process for multi-body systems, the generated redundant constraints will result in ill-conditioned dynamic equations, which are not good for stable simulations when the system motion proceeds near a singular configuration. In order to overcome the singularity problems, the paper presents a regularization method with an explicit expression based on Gauss principle, which does not need to eliminate the constraint violation after each iteration step compared with the traditional methods. Then the effectiveness and stability are demonstrated through two numerical examples, a slider-crank mechanism and a planar four-bar linkage. Simulation results obtained with the proposed method are analyzed and compared with augmented Lagrangian formulation and the null space formulation in terms of constraints violation, drift mechanical energy and computational efficiency, which shows that the proposed method is suitable to perform efficient and stable dynamic simulations for multi-body systems with singular configurations.


Author(s):  
Muxin Han ◽  
Hongguang Liu

Abstract We propose a new model of the spherical symmetric quantum black hole in the reduced phase space formulation. We deparametrize gravity by coupling to the Gaussian dust which provides the material coordinates. The foliation by dust coordinates covers both the interior and exterior of the black hole. After the spherical symmetry reduction, our model is a 1+1 dimensional field theory containing infinitely many degrees of freedom. The effective dynamics of the quantum black hole is generated by an improved physical Hamiltonian ${\bf H}_\Delta$. The holonomy correction in ${\bf H}_\Delta$ is implemented by the $\bar{\mu}$-scheme regularization with a Planckian area scale $\Delta$ (which often chosen as the minimal area gap in Loop Quantum Gravity). The effective dynamics recovers the semiclassical Schwarzschild geometry at low curvature regime and resolves the black hole singularity with Planckian curvature, e.g. $R_{\mu\nu\rho\sigma}R^{\mu\nu\rho\sigma}\sim 1/{\Delta}^2$. Our model predicts that the evolution of the black hole at late time reaches the charged Nariai geometry ${\rm dS}_2\times S^2$ with Planckian radii $\sim \sqrt{\Delta}$. The Nariai geometry is stable under linear perturbations but may be unstable by nonperturbative quantum effects. Our model suggests the existence of quantum tunneling of the Nariai geometry and a scenario of black-hole-to-white-hole transition.


2021 ◽  
Author(s):  
Marcos Mariño

Quantum mechanics is one of the most successful theories in science, and is relevant to nearly all modern topics of scientific research. This textbook moves beyond the introductory and intermediate principles of quantum mechanics frequently covered in undergraduate and graduate courses, presenting in-depth coverage of many more exciting and advanced topics. The author provides a clearly structured text for advanced students, graduates and researchers looking to deepen their knowledge of theoretical quantum mechanics. The book opens with a brief introduction covering key concepts and mathematical tools, followed by a detailed description of the Wentzel–Kramers–Brillouin (WKB) method. Two alternative formulations of quantum mechanics are then presented: Wigner's phase space formulation and Feynman's path integral formulation. The text concludes with a chapter examining metastable states and resonances. Step-by-step derivations, worked examples and physical applications are included throughout.


Entropy ◽  
2021 ◽  
Vol 23 (12) ◽  
pp. 1602
Author(s):  
Jin-Fu Chen ◽  
Tian Qiu ◽  
Hai-Tao Quan

Quantum Brownian motion, described by the Caldeira–Leggett model, brings insights to the understanding of phenomena and essence of quantum thermodynamics, especially the quantum work and heat associated with their classical counterparts. By employing the phase-space formulation approach, we study the heat distribution of a relaxation process in the quantum Brownian motion model. The analytical result of the characteristic function of heat is obtained at any relaxation time with an arbitrary friction coefficient. By taking the classical limit, such a result approaches the heat distribution of the classical Brownian motion described by the Langevin equation, indicating the quantum–classical correspondence principle for heat distribution. We also demonstrate that the fluctuating heat at any relaxation time satisfies the exchange fluctuation theorem of heat and its long-time limit reflects the complete thermalization of the system. Our research study justifies the definition of the quantum fluctuating heat via two-point measurements.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6562
Author(s):  
Joaquim Soler-Sagarra ◽  
Vivien Hakoun ◽  
Marco Dentz ◽  
Jesus Carrera

Finding a numerical method to model solute transport in porous media with high heterogeneity is crucial, especially when chemical reactions are involved. The phase space formulation termed the multi-advective water mixing approach (MAWMA) was proposed to address this issue. The water parcel method (WP) may be obtained by discretizing MAWMA in space, time, and velocity. WP needs two transition matrices of velocity to reproduce advection (Markovian in space) and mixing (Markovian in time), separately. The matrices express the transition probability of water instead of individual solute concentration. This entails a change in concept, since the entire transport phenomenon is defined by the water phase. Concentration is reduced to a chemical attribute. The water transition matrix is obtained and is demonstrated to be constant in time. Moreover, the WP method is compared with the classic random walk method (RW) in a high heterogeneous domain. Results show that the WP adequately reproduces advection and dispersion, but overestimates mixing because mixing is a sub-velocity phase process. The WP method must, therefore, be extended to take into account incomplete mixing within velocity classes.


Sign in / Sign up

Export Citation Format

Share Document