Characterization of piezoelectric patch material with hysteresis, saturation, creep, and vibration nonlinearity effects and its application to the active vibration suppression for cantilever beam

2020 ◽  
pp. 107754632098057
Author(s):  
Mohd Hafiz Abdul Satar ◽  
Ahmad Firdaus Murad ◽  
Ahmad Zhafran Ahmad Mazlan

This research work aims to investigate the presence of four nonlinear characteristics (i.e., hysteresis, saturation, creep, and uncertainty vibration) when a piezoelectric patch material acts as an actuator and sensor for the active vibration suppression of a cantilever beam. The parameters such as different operating frequencies and voltages are taken into account for the piezoelectric patch material characterization and the vibration before and after activation of a proportional–derivative–integral controller in an active vibration suppression system are measured. The effect of different proportional–derivative–integral controller tuning methods, frequency independent, and frequency dependency excitations are the three main contributions to evaluate the performance of active vibration suppression system. From the results, the piezoelectric actuator posed all the four nonlinearity effects while only three are observed in the sensor characteristics, and these effects increased significantly with the increase of operating frequencies and voltages. For the frequency-independent excitation of the active vibration suppression system, the vibration attenuation of the beam shows an improvement from low to higher excitation frequency, except at 500 Hz because of the saturation effect. In terms of controller performances, the proportional gain step-up method shows the best performance by scoring 3/5 of highest vibration attenuation percentages compared with manual and Ziegler–Nichols methods. For the frequency-dependent excitation, the effective frequency range for the active vibration suppression system is determined between 75 and 245 Hz with the highest vibration attenuation of 79.60% occurred at the second natural frequency of the beam.

Author(s):  
Ratiba Fatma Ghachi ◽  
Wael Alnahhal ◽  
Osama Abdeljaber

This paper presents a beam structure of a new metamaterial-inspired dynamic vibration attenuation system. The proposed experimental research presents a designed cantilevered zigzag structure that can have natural frequencies orders of magnitude lower than a simple cantilever of the same scale. The proposed vibration attenuation system relies on the masses places on the zigzag structure thus changing the dynamic response of the system. The zigzag plates are integrated into the host structure namely a cantilever beam with openings, forming what is referred to here as a metastructure. Experimental frequency response function results are shown comparing the response of the structure to depending on the natural frequency of the zigzag structures. Results show that the distributed inserts in the system can split the peak response of the structure into two separate peaks rendering the peak frequency a low transmission frequency. These preliminary results provide a view of the potential of research work on active-controlled structures and nonlinear insert-structure interaction for vibration attenuation.


2016 ◽  
Vol 1 (1) ◽  
pp. 273-282 ◽  
Author(s):  
Isabela R. Birs ◽  
Cristina I. Muresan ◽  
Silviu Folea ◽  
Ovidiu Prodan

AbstractAlong the years, unwanted vibrations in airplane wings have led to passenger discomfort. In this study, the airplane wing is modeled as a cantilever beam on which active vibration suppression is tested. The paper details the tuning of both integer and fractional order Proportional Derivative type controllers based on constraints imposed in the frequency domain. The controllers are experimentally validated and the results prove once more the superiority of the fractional order control approach.


Author(s):  
Y Xia ◽  
A Ghasempoor

Vibration control strategies strive to reduce the effect of harmful vibrations on machinery and people. In general, these strategies are classified as passive or active. Although passive vibration control techniques are generally less complex, there is a limit to their effectiveness. Active vibration control strategies, on the other hand, can be very effective but require more complex algorithms and are especially susceptible to time delays. The current paper introduces a novel vibration suppression system using non-linear optimization. The proposed methodology eliminates the need for a feedback loop and the sensitivity to time delays. The system has been evaluated experimentally and the results show the validity of the proposed methodology.


Sign in / Sign up

Export Citation Format

Share Document