Adaptive active vibration suppression of flexible beam structures

Author(s):  
Y Xia ◽  
A Ghasempoor

Vibration control strategies strive to reduce the effect of harmful vibrations on machinery and people. In general, these strategies are classified as passive or active. Although passive vibration control techniques are generally less complex, there is a limit to their effectiveness. Active vibration control strategies, on the other hand, can be very effective but require more complex algorithms and are especially susceptible to time delays. The current paper introduces a novel vibration suppression system using non-linear optimization. The proposed methodology eliminates the need for a feedback loop and the sensitivity to time delays. The system has been evaluated experimentally and the results show the validity of the proposed methodology.

2020 ◽  
Vol 26 (21-22) ◽  
pp. 2026-2036
Author(s):  
Xiangdong Liu ◽  
Haikuo Liu ◽  
Changkun Du ◽  
Pingli Lu ◽  
Dongping Jin ◽  
...  

The objective of this work was to suppress the vibration of flexible structures by using a distributed cooperative control scheme with decentralized sensors and actuators. For the application of the distributed cooperative control strategy, we first propose the multiple autonomous substructure models for flexible structures. Each autonomous substructure is equipped with its own sensor, actuator, and controller, and they all have computation and communication capabilities. The primary focus of this investigation was to illustrate the use of a distributed cooperative protocol to enable vibration control. Based on the proposed models, we design two novel active vibration control strategies, both of which are implemented in a distributed manner under a communication network. The distributed controllers can effectively suppress the vibration of flexible structures, and a certain degree of interaction cooperation will improve the performance of the vibration suppression. The stability of flexible systems is analyzed by the Lyapunov theory. Finally, numerical examples of a cantilever beam structure demonstrate the effectiveness of the proposed methods.


Author(s):  
M A Hossain ◽  
M O Tokhi

This paper presents an investigation into the development of an adaptive active control mechanism for vibration suppression using genetic algorithms (GAs). GAs are used to estimate the adaptive controller characteristics, where the controller is designed on the basis of optimal vibration suppression using the plant model. This is realized by minimizing the prediction error of the actual plant output and the model output. A MATLAB GA toolbox is used to identify the controller parameters. A comparative performance of the conventional recursive least-squares (RLS) scheme and the GA is presented. The active vibration control system is implemented with both the GA and the RLS schemes, and its performance assessed in the suppression of vibration along a flexible beam structure in each case.


Author(s):  
M O Tokhi ◽  
M A Hossain

This paper presents the design and performance evaluation of an adaptive active control mechanism for vibration suppression inflexible beam structures. A cantilever beam system in transverse vibration is considered. First-order central finite difference methods are used to study the behaviour of the beam and develop a suitable test and verification platform. An active vibration control algorithm is developed within an adaptive control framework for broadband cancellation of vibration along the beam using a single-input multi-output (SIMO) control structure. The algorithm is implemented on a digital processor incorporating a digital signal processing (DSP) and transputer system. Simulation results verifying the performance of the algorithm in the suppression of vibration along the beam, using single-input single-output and SIMO control structures, are presented and discussed.


2011 ◽  
Vol 383-390 ◽  
pp. 5580-5585
Author(s):  
Da Fang Wu ◽  
Liang Huang ◽  
Fei Su ◽  
Cheng Xiang Liu ◽  
Hong Yuan Yang ◽  
...  

In this paper, the principle and method of active vibration control of a flexible cantilever beam with PZT actuators was studied. A strategy of active control on the first and second order vibration mode of the flexible cantilever beam are determined and implemented by using the independent modal control. Eexperimental results show that the structural damping of the flexible cantilever beam is improved effectively and excellent effect of vibration suppression is achieved with the control strategy.


2016 ◽  
Vol 24 (6) ◽  
pp. 1086-1100
Author(s):  
Utku Boz ◽  
Ipek Basdogan

In adaptive control applications for noise and vibration, finite ımpulse response (FIR) or ınfinite ımpulse response (IIR) filter structures are used for online adaptation of the controller parameters. IIR filters offer the advantage of representing dynamics of the controller with smaller number of filter parameters than with FIR filters. However, the possibility of instability and convergence to suboptimal solutions are the main drawbacks of such controllers. An IIR filtering-based Steiglitz–McBride (SM) algorithm offers nearly-optimal solutions. However, real-time implementation of the SM algorithm has never been explored and application of the algorithm is limited to numerical studies for active vibration control. Furthermore, the prefiltering procedure of the SM increases the computational complexity of the algorithm in comparison to other IIR filtering-based algorithms. Based on the lack of studies about the SM in the literature, an SM time-domain algorithm for AVC was implemented both numerically and experimentally in this study. A methodology that integrates frequency domain IIR filtering techniques with the classic SM time-domain algorithm is proposed to decrease the computational complexity. Results of the proposed approach are compared with the classical SM algorithm. Both SM and the proposed approach offer multimodal vibration suppression and it is possible to predict the performance of the controller via simulations. The proposed hybrid approach ensures similar vibration suppression performance compared to the classical SM and offers computational advantage as the number of control filter parameters increases.


2021 ◽  
Author(s):  
Yong Xia

Vibration control strategies strive to reduce the effect of harmful vibrations such as machining chatter. In general, these strategies are classified as passive or active. While passive vibration control techniques are generally less complex, there is a limit to their effectiveness. Active vibration control strategies, which work by providing an additional energy supply to vibration systems, on the other hand, require more complex algorithms but can be very effective. In this work, a novel artificial neural network-based active vibration control system has been developed. The developed system can detect the sinusoidal vibration component with the highest power and suppress it in one control cycle, and in subsequent cycles, sinusoidal signals with the next highest power will be suppressed. With artificial neural networks trained to cover enough frequency and amplitude ranges, most of the original vibration can be suppressed. The efficiency of the proposed methodology has been verified experimentally in the vibration control of a cantilever beam. Artificial neural networks can be trained automatically for updated time delays in the system when necessary. Experimental results show that the developed active vibration control system is real time, adaptable, robust, effective and easy to be implemented. Finally, an experimental setup of chatter suppression for a lathe has been successfully implemented, and the successful techniques used in the previous artificial neural network-based active vibration control system have been utilized for active chatter suppression in turning.


Author(s):  
Mehran Makhtoumi

Satellites are subject to various severe vibration during different phases of flight. The concept of satellite smart adapter is proposed in this study to achieve active vibration control of launch vehicle on satellite. The satellite smart adapter has 18 active struts in which the middle section of each strut is made of piezoelectric stack actuator. Comprehensive conceptual design of the satellite smart adapter is presented to indicate the design parameters, requirements and philosophy applied which are based on the reliability and durability criterions to ensure successful functionality of the proposed system. The coupled electromechanical virtual work equation for the piezoelectric stack actuator in each active strut is drived by applying D'Alembert's principle. Modal analysis is performed to characterize the inherent properties of the smart adapter and extraction of a mathematical model of the system. Active vibration control analysis was conducted using fuzzy logic control with triangular membership functions and acceleration feedback. The control results conclude that the proposed satellite smart adapter configuration which benefits from piezoelectric stack actuator as elements of its 18 active struts has high strength and shows excellent robustness and effectiveness in vibration suppression of launch vehicle on satellite.


Author(s):  
Lawrence R. Corr ◽  
William W. Clark

Abstract This paper presents a numerical study in which active and hybrid vibration confinement is compared with a conventional active vibration control method. Vibration confinement is a vibration control technique that is based on reshaping structural modes to produce “quiet areas” in a structure as opposed to adding damping as in conventional active or passive methods. In this paper, active and hybrid confinement is achieved in a flexible beam with two pairs of piezoelectric actuators and sensors and with two vibration absorbers. For comparison purposes, active damping is achieved also with two pairs of piezoelectric actuators and sensors using direct velocity feedback. The results show that both approaches are effective in controlling vibrations in the targeted area of the beam, with direct velocity feedback being slightly more cost effective in terms of required power. When combined with passive confinement, however, each method is improved with a significant reduction in required power.


2001 ◽  
Author(s):  
G. Song ◽  
B. Kotejoshyer ◽  
J. Fei

Abstract This paper presents a new approach of integrating the method of command input shaping and the technique of active vibration suppression for vibration reduction of flexible structures during slew operations. The control object is a flexible composite beam driven by a high torque DC motor with the presence of nonlinearities such as backlash and stick-slip type of friction. Two piezoelectric patches are bonded on the surface of the flexible beam near its cantilevered end and are used as the smart actuator and the smart sensor respectively. In this new approach, the method of command input shaping is used to modify the existing command so that less vibration will be caused by the command itself. To overcome the nonlinearities associated with the DC motor, an extended shaper is designed. The technique of active vibration suppression using smart materials is used to actively control the vibration during and after the slew. With this pair of smart actuator and smart sensor, a strain rate feedback (SRF) controller is designed for active vibration suppression. With the extended Zero Vibration Derivative (ZVD) shaper and the SRF controller, the proposed new approach can effectively reduce the vibration of the flexible beam during slew operations.


Sign in / Sign up

Export Citation Format

Share Document