Boundary Integral Equation Methods for a Refined Model of Elastic Plates

2006 ◽  
Vol 11 (6) ◽  
pp. 642-654
Author(s):  
Radu Mitric ◽  
Christian Constanda

A theory of bending of elastic plates is considered, in which the effect of transverse shear deformation and transverse normal strain are taken into account through a specific form of the displacement field. It is shown that the system of equilibrium equations is elliptic and that Betti and Somigliana formulae can be established, which permit the solution of the interior and exterior Dirichlet and Neumann problems by means of boundary integral equation methods.

1986 ◽  
Vol 29 (1) ◽  
pp. 47-56 ◽  
Author(s):  
Christian Constanda

Kirchhoff's kinematic hypothesis that leads to an approximate two-dimensional theory of bending of elastic plates consists in assuming that the displacements have the form [1]In general, the Dirichlet and Neumann problems for the equilibrium equations obtained on the basis of (1.1) cannot be solved by the boundary integral equation method both inside and outside a bounded domain because the corresponding matrix of fundamental solutions does not vanish at infinity [2]. However, as we show in this paper, the method is still applicable if the asymptotic behaviour of the solution is suitably restricted.


Sign in / Sign up

Export Citation Format

Share Document