scholarly journals Acceleration of the IMplicit–EXplicit nonhydrostatic unified model of the atmosphere on manycore processors

Author(s):  
Daniel S Abdi ◽  
Francis X Giraldo ◽  
Emil M Constantinescu ◽  
Lester E Carr ◽  
Lucas C Wilcox ◽  
...  

We present the acceleration of an IMplicit–EXplicit (IMEX) nonhydrostatic atmospheric model on manycore processors such as graphic processing units (GPUs) and Intel’s Many Integrated Core (MIC) architecture. IMEX time integration methods sidestep the constraint imposed by the Courant–Friedrichs–Lewy condition on explicit methods through corrective implicit solves within each time step. In this work, we implement and evaluate the performance of IMEX on manycore processors relative to explicit methods. Using 3D-IMEX at Courant number C = 15, we obtained a speedup of about 4× relative to an explicit time stepping method run with the maximum allowable C = 1. Moreover, the unconditional stability of IMEX with respect to the fast waves means the speedup can increase significantly with the Courant number as long as the accuracy of the resulting solution is acceptable. We show a speedup of 100× at C = 150 using 1D-IMEX to demonstrate this point. Several improvements on the IMEX procedure were necessary in order to outperform our results with explicit methods: (a) reducing the number of degrees of freedom of the IMEX formulation by forming the Schur complement, (b) formulating a horizontally explicit vertically implicit 1D-IMEX scheme that has a lower workload and better scalability than 3D-IMEX, (c) using high-order polynomial preconditioners to reduce the condition number of the resulting system, and (d) using a direct solver for the 1D-IMEX method by performing and storing LU factorizations once to obtain a constant cost for any Courant number. Without all of these improvements, explicit time integration methods turned out to be difficult to beat. We discuss in detail the IMEX infrastructure required for formulating and implementing efficient methods on manycore processors. Several parametric studies are conducted to demonstrate the gain from each of the abovementioned improvements. Finally, we validate our results with standard benchmark problems in numerical weather prediction and evaluate the performance and scalability of the IMEX method using up to 4192 GPUs and 16 Knights Landing processors.

2012 ◽  
Vol 5 (6) ◽  
pp. 1395-1405 ◽  
Author(s):  
M. Schlegel ◽  
O. Knoth ◽  
M. Arnold ◽  
R. Wolke

Abstract. Explicit time integration methods are characterised by a small numerical effort per time step. In the application to multiscale problems in atmospheric modelling, this benefit is often more than compensated by stability problems and step size restrictions resulting from stiff chemical reaction terms and from a locally varying Courant-Friedrichs-Lewy (CFL) condition for the advection terms. Splitting methods may be applied to efficiently combine implicit and explicit methods (IMEX splitting). Complementarily multirate time integration schemes allow for a local adaptation of the time step size to the grid size. In combination, these approaches lead to schemes which are efficient in terms of evaluations of the right-hand side. Special challenges arise when these methods are to be implemented. For an efficient implementation, it is crucial to locate and exploit redundancies. Furthermore, the more complex programme flow may lead to computational overhead which, in the worst case, more than compensates the theoretical gain in efficiency. We present a general splitting approach which allows both for IMEX splittings and for local time step adaptation. The main focus is on an efficient implementation of this approach for parallel computation on computer clusters.


1973 ◽  
Vol 40 (2) ◽  
pp. 417-421 ◽  
Author(s):  
R. D. Krieg

Methods of numerical time integration of the equation M¯q¨ + K¯q = f are examined in this paper. A particular class of explicit time integration methods is defined and this class is searched for an unconditionally stable method. The class is found to contain no such method and, furthermore, is found to contain no method with a larger stable time step size than that characterized by the simple central difference time integration method.


2014 ◽  
Vol 18 (5) ◽  
pp. 697-709 ◽  
Author(s):  
Sylvain Weill ◽  
Raphael di Chiara-Roupert ◽  
Philippe Ackerer

2019 ◽  
Vol 6 (2) ◽  
pp. 147-169 ◽  
Author(s):  
Philipp Bader ◽  
◽  
Sergio Blanes ◽  
Fernando Casas ◽  
Mechthild Thalhammer ◽  
...  

Author(s):  
Chang-New Chen

Development of differential quadrature related generalized methods, discrete element analysis methods and EDQ based time integration methods has been carried out the last few years. The related numerical algorithms are summarized and presented. Numerical results are also presented.


Sign in / Sign up

Export Citation Format

Share Document