A modified state space differential quadrature method for free vibration analysis of soft-core sandwich panels

2017 ◽  
Vol 21 (6) ◽  
pp. 1843-1879 ◽  
Author(s):  
Balavishnu Udayakumar ◽  
KV Nagendra Gopal

Modifications and improvements to conventional state space differential quadrature method are proposed for free vibration analysis of thick, soft-core sandwich panels with arbitrary edge boundary conditions, using an exact two-dimensional elasticity model. The modifications are based on a systematic procedure to implement all possible combinations of edge boundary conditions including simply supported, clamped, free and guided edges. Natural frequencies and mode shapes are obtained and compared with exact elasticity solutions from state space method and approximate solution from finite element simulations; demonstrating the high numerical accuracy and rapid convergence of the modified method. Further, the proposed framework is compared to the conventional implementation of the state space differential quadrature method for thick cantilever sandwich panels and is shown to give results with better accuracy and faster convergence.

1999 ◽  
Vol 121 (2) ◽  
pp. 204-208 ◽  
Author(s):  
F.-L. Liu ◽  
K. M. Liew

A new numerical technique, the differential quadrature element method (DQEM), has been developed for solving the free vibration of the discontinuous Mindlin plate in this paper. By the DQEM, the complex plate domain is decomposed into small simple continuous subdomains (elements) and the differential quadrature method (DQM) is applied to each continuous subdomain to solve the problems. The detailed formulations for the DQEM and the connection conditions between each element are presented. Several numerical examples are analyzed to demonstrate the accuracy and applicability of this new method to the free vibration analysis of the Mindlin plate with various discontinuities which are not solvable directly using the differential quadrature method.


Sign in / Sign up

Export Citation Format

Share Document