Free vibration analysis of three-layer thin cylindrical shell with variable thickness two-dimensional FGM middle layer under arbitrary boundary conditions

2021 ◽  
pp. 109963622110204
Author(s):  
Xue-Yang Miao ◽  
Chao-Feng Li ◽  
Yu-Lin Jiang ◽  
Zi-Xuan Zhang

In this paper, a unified method is developed to analyze free vibrations of the three-layer functionally graded cylindrical shell with non-uniform thickness. The middle layer is composed of two-dimensional functionally gradient materials (2D-FGMs), whose thickness is set as a function of smooth continuity. Four sets of artificial springs are assigned at the ends of the shells to satisfy the arbitrary boundary conditions. The Sanders’ shell theory is used to obtain the strain and curvature-displacement relations. Furthermore, the Chebyshev polynomials are selected as the admissible function to improve computational efficiency, and the equation of motion is derived by the Rayleigh–Ritz method. The effects of spring stiffness, volume fraction indexes, configuration on of shell, and the change in thickness of the middle layer on the modal characteristics of the new structural shell are also analyzed.

2016 ◽  
Vol 2016 ◽  
pp. 1-30 ◽  
Author(s):  
Dongyan Shi ◽  
Yunke Zhao ◽  
Qingshan Wang ◽  
Xiaoyan Teng ◽  
Fuzhen Pang

This paper presents free vibration analysis of open and closed shells with arbitrary boundary conditions using a spectro-geometric-Ritz method. In this method, regardless of the boundary conditions, each of the displacement components of open and closed shells is represented simultaneously as a standard Fourier cosine series and several auxiliary functions. The auxiliary functions are introduced to accelerate the convergence of the series expansion and eliminate all the relevant discontinuities with the displacement and its derivatives at the boundaries. The boundary conditions are modeled using the spring stiffness technique. All the expansion coefficients are treated equally and independently as the generalized coordinates and determined using Rayleigh-Ritz method. By using this method, a unified vibration analysis model for the open and closed shells with arbitrary boundary conditions can be established without the need of changing either the equations of motion or the expression of the displacement components. The reliability and accuracy of the proposed method are validated with the FEM results and those from the literature.


2013 ◽  
Vol 135 (6) ◽  
Author(s):  
Lun Liu ◽  
Dengqing Cao ◽  
Shupeng Sun

The free vibration analysis of rotating ring-stiffened cylindrical shells with arbitrary boundary conditions is investigated by employing the Rayleigh–Ritz method. Six sets of characteristic orthogonal polynomials satisfying six classical boundary conditions are constructed directly by employing Gram–Schmidt procedure and then are employed to represent the general formulations for the displacements in any axial mode of free vibrations for shells. Employing those formulations during the Rayleigh–Ritz procedure and based on Sanders' shell theory, the eigenvalue equations related to rotating ring-stiffened cylindrical shells with various classical boundary conditions have been derived. To simulate more general boundaries, the concept of artificial springs is employed and the eigenvalue equations related to free vibration of shells under elastic boundary conditions are derived. By adjusting the stiffness of artificial springs, those equations can be used to investigate the vibrational characteristics of shells with arbitrary boundaries. By comparing with the available analytical results for the ring-stiffened cylindrical shells and the rotating shell without stiffeners, the method proposed in this paper is verified. Strong convergence is also observed from convergence study. Further, the effects of parameters, such as the stiffness of artificial springs, the rotating speed of the ring-stiffened shell, the number of ring stiffeners and the depth to width ratio of ring stiffeners, on the natural frequencies are studied.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Huimin Liu ◽  
Fanming Liu ◽  
Xin Jing ◽  
Zhenpeng Wang ◽  
Linlin Xia

This paper presents the first known vibration characteristic of rectangular thick plates on Pasternak foundation with arbitrary boundary conditions on the basis of the three-dimensional elasticity theory. The arbitrary boundary conditions are obtained by laying out three types of linear springs on all edges. The modified Fourier series are chosen as the basis functions of the admissible function of the thick plates to eliminate all the relevant discontinuities of the displacements and their derivatives at the edges. The exact solution is obtained based on the Rayleigh–Ritz procedure by the energy functions of the thick plate. The excellent accuracy and reliability of current solutions are demonstrated by numerical examples and comparisons with the results available in the literature. In addition, the influence of the foundation coefficients as well as the boundary restraint parameters is also analyzed, which can serve as the benchmark data for the future research technique.


2018 ◽  
Vol 2018 ◽  
pp. 1-22
Author(s):  
Yiming Liu ◽  
Zhuang Lin ◽  
Hu Ding ◽  
Guoyong Jin ◽  
Sensen Yan

A modified Fourier–Ritz method is developed for the flexural and in-plane vibration analysis of plates with two rectangular cutouts with arbitrary boundary conditions, aiming to provide a unified solving process for cases that the plate has various locations or sizes of cutout, and different kinds of boundary conditions. Under the current framework, modifying the position of the cutout or the boundary conditions of the plate is just as changing the geometric parameters of the plate, and there is no need to change the solution procedures. The arbitrary boundary conditions can be obtained by setting the stiffness constant of the boundary springs which are fixed uniformly along the edges of the plate at proper values. The strain and kinetic energy functions of a plate with rectangular cutout are derived in detail. The convergence and accuracy of the present method are demonstrated by comparing the present results with those obtained from the FEM software. In this paper, free in-plane and flexural vibration characteristics of the plate with rectangular cutout under general boundary conditions are studied. From the results, it can be found that the geometric parameters and positions of the cutout and the boundary conditions of the plate will obviously influence the natural vibration characteristics of the structures.


2013 ◽  
Vol 20 (3) ◽  
pp. 459-479 ◽  
Author(s):  
Meixia Chen ◽  
Jianhui Wei ◽  
Kun Xie ◽  
Naiqi Deng ◽  
Guoxiang Hou

Wave based method which can be recognized as a semi-analytical and semi-numerical method is presented to analyze the free vibration characteristics of ring stiffened cylindrical shell with intermediate large frame ribs for arbitrary boundary conditions. According to the structure type and the positions of discontinuities, the model is divided into different substructures whose vibration field is expanded by wave functions which are exactly analytical solutions to the governing equations of the motions of corresponding structure type. Boundary conditions and continuity equations between different substructures are used to form the final matrix to be solved. Natural frequencies and vibration mode shapes are calculated by wave based method and the results show good agreement with finite element method for clamped-clamped, shear diaphragm – shear diaphragm and free-free boundary conditions. Free vibration characteristics of ring stiffened cylindrical shells with intermediate large frame ribs are compared with those with bulkheads and those with all ordinary ribs. Effects of the size, the number and the distribution of intermediate large frame rib are investigated. The frame rib which is large enough is playing a role as bulkhead, which can be considered imposing simply supported and clamped constraints at one end of the cabin and dividing the cylindrical shell into several cabins vibrating separately at their own natural frequencies.


2016 ◽  
Vol 2016 ◽  
pp. 1-18 ◽  
Author(s):  
Dong Tang ◽  
Guoxun Wu ◽  
Xiongliang Yao ◽  
Chuanlong Wang

An analytical procedure for free vibration analysis of circular cylindrical shells with arbitrary boundary conditions is developed with the employment of the method of reverberation-ray matrix. Based on the Flügge thin shell theory, the equations of motion are solved and exact solutions of the traveling wave form along the axial direction and the standing wave form along the circumferential direction are obtained. With such a unidirectional traveling wave form solution, the method of reverberation-ray matrix is introduced to derive a unified and compact form of equation for natural frequencies of circular cylindrical shells with arbitrary boundary conditions. The exact frequency parameters obtained in this paper are validated by comparing with those given by other researchers. The effects of the elastic restraints on the frequency parameters are examined in detail and some novel and useful conclusions are achieved.


Sign in / Sign up

Export Citation Format

Share Document