scholarly journals An Electronic Aerosol Delivery System for Functional Magnetic Resonance Imaging

2020 ◽  
Vol 14 ◽  
pp. 117822182090414
Author(s):  
Andréa L Hobkirk ◽  
Zachary Bitzer ◽  
Reema Goel ◽  
Christopher T Sica ◽  
Craig Livelsberger ◽  
...  

Background: Public health concerns over the addictive potential of electronic cigarettes (e-cigs) have heightened in recent years. Brain function during e-cig use could provide an objective measure of the addictive potential of new vaping products to facilitate research; however, there are limited methods for delivering e-cig aerosols during functional magnetic resonance imaging (fMRI). The current study describes the development and feasibility testing of a prototype to deliver up to four different e-cig aerosols during fMRI. Methods: Standardized methods were used to test the devices’ air flow variability, nicotine yield, and free radical production. MRI scans were run with and without the device present to assess its safety and effects on MRI data quality. Five daily smokers were recruited to assess plasma nicotine absorption from e-liquids containing nicotine concentrations of 8, 11, 16, 24, and 36 mg/ml. Feedback was collected from participants through a semi-structured interview and computerized questionnaire to assess comfort and subjective experiences of inhaling aerosol from the device. Results: Nicotine yield captured from the aerosol produced by the device was highly correlated with the nicotine concentration of the e-liquids used (R2 = 0.965). Nicotine yield was reduced by a mean of 48% and free radical production by 17% after traveling through the device. The e-liquid containing the highest nicotine concentration tested (36 mg/ml) resulted in the highest plasma nicotine boost (6.6 ng/ml). Overall, participants reported that the device was comfortable to use and inhaling the e-cig aerosols was tolerable. The device was determined to be safe for use during fMRI and had insignificant effects on scan quality. Conclusions: With the current project, we were able to design a working prototype that safely and effectively delivers e-cig aerosols during fMRI. The device has the potential to be used to assess brain activation during e-cig use and to compare brain reactivity to varying flavors, nicotine concentrations, and other e-cig characteristics.

1998 ◽  
Vol 41 (3) ◽  
pp. 538-548 ◽  
Author(s):  
Sean C. Huckins ◽  
Christopher W. Turner ◽  
Karen A. Doherty ◽  
Michael M. Fonte ◽  
Nikolaus M. Szeverenyi

Functional Magnetic Resonance Imaging (fMRI) holds exciting potential as a research and clinical tool for exploring the human auditory system. This noninvasive technique allows the measurement of discrete changes in cerebral cortical blood flow in response to sensory stimuli, allowing determination of precise neuroanatomical locations of the underlying brain parenchymal activity. Application of fMRI in auditory research, however, has been limited. One problem is that fMRI utilizing echo-planar imaging technology (EPI) generates intense noise that could potentially affect the results of auditory experiments. Also, issues relating to the reliability of fMRI for listeners with normal hearing need to be resolved before this technique can be used to study listeners with hearing loss. This preliminary study examines the feasibility of using fMRI in auditory research by performing a simple set of experiments to test the reliability of scanning parameters that use a high resolution and high signal-to-noise ratio unlike that presently reported in the literature. We used consonant-vowel (CV) speech stimuli to investigate whether or not we could observe reproducible and consistent changes in cortical blood flow in listeners during a single scanning session, across more than one scanning session, and in more than one listener. In addition, we wanted to determine if there were differences between CV speech and nonspeech complex stimuli across listeners. Our study shows reproducibility within and across listeners for CV speech stimuli. Results were reproducible for CV speech stimuli within fMRI scanning sessions for 5 out of 9 listeners and were reproducible for 6 out of 8 listeners across fMRI scanning sessions. Results of nonspeech complex stimuli across listeners showed activity in 4 out of 9 individuals tested.


Sign in / Sign up

Export Citation Format

Share Document